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Motivation: High-Precision Control of Uncertain 
Dynamical Systems
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• Modern/future control systems are required to perform control tasks with 
high precision under extremely uncertain conditions

• Main challenge: Accurate models for system dynamics and / or system-
environment interactions may not be available a priori

• Goal: Design control algorithms for high-precision control of uncertain 
systems based on the idea of directly controlling the effects of model 
uncertainty and unknown disturbances on the control system

mars.nasa.gov



Motivation: A New Perspective on Trajectory 
Generation / Optimization Problems 

• Deterministic Trajectory Generation/Optimization: Steer a system “from 
point A to point B” while minimizing a relevant performance index without 
violating certain input and / or state constraints 

• Trajectory Optimization for Uncertain Systems: 

– system model is stochastic and may not be available a priori 

– boundary conditions should be probabilistic rather than deterministic

• Distribution / Covariance Steering: Special class of stochastic trajectory 
optimization problems in which the goal is to drive the state mean and state 
covariance to prescribed quantities

-3-Covariance Steering Problem

Standard (deterministic) trajectory 
generation problem

v/s



PART I: Model-Based Nonlinear Covariance 
Steering 
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Covariance Steering for Discrete-Time Stochastic 
Nonlinear Systems
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• Nonlinear Covariance Steering Problem: Given 𝜇d ∈ ℝ𝑛, 𝚺d = 𝚺d
′ > 0, 

find a control policy 
𝝕 ≔ {𝜑0 𝑥 , 𝜑1 𝑥 ,… , 𝜑𝑁−1(𝑥)}

that will steer the system (1) to a state 𝑥 𝑁 = 𝑥f with

𝔼[𝑥f] = 𝜇d,             cov 𝑥f, 𝑥f = 𝚺d (2)

while minimizing a relevant performance index: 𝐽 𝑢 = 𝔼[σ𝑡=0
𝑁−1 𝑢 𝑡 2]

• Given the discrete-time stochastic nonlinear system:

𝑥 𝑡 + 1 = 𝑓(𝑥 𝑡 , 𝑢 𝑡 ) + 𝑤(𝑡), 𝑥 0 = 𝑥0 (1)    

• 𝔼[𝑥0] = 𝜇0, cov 𝑥0, 𝑥0 = 𝚺0, where 𝜇0 ∈ ℝ𝑛, 𝚺0 = 𝚺0′ > 0 (given)

• {𝑥 𝑡 : 𝑡 ∈ 0, 𝑁 𝑑}: state process, {𝑢 𝑡 : 𝑡 ∈ 0, 𝑁 − 1 𝑑}: input process, 

• {𝑤 𝑡 : 𝑡 ∈ 0, 𝑁 − 1 𝑑}: sequence of i.i.d. (normal) random variables 

𝔼 𝑤 𝑡 = 0, 𝔼 𝑤 𝑡 𝑤 𝜏 ′ = 𝛿 𝑡, 𝜏 𝐖, where 𝐖 = 𝐖′ ≥ 𝟎



Successive Linearization of Dynamics
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• At stage 𝑡 = 𝑘 the nonlinear system is linearized around (𝜇𝑘 , 𝜈𝑘), where 
𝜇𝑘 and 𝜈𝑘 are (approximations of) the state mean and input mean at 𝑡 = 𝑘

𝑧 𝑡 + 1 = 𝐀𝑘 𝑧 𝑡 − 𝜇𝑘 + 𝐁𝑘 𝑢 𝑡 − 𝜈𝑘 + 𝑟𝑘 +𝑤(𝑡),

𝐀𝑘 = 𝑓𝑥 𝜇𝑘 , 𝜈𝑘 , 𝐁𝑘 = 𝑓𝑢(𝜇𝑘 , 𝜈𝑘),    𝑟𝑘 = 𝑓 𝜇𝑘 , 𝜈𝑘

• Equivalently,

𝑧 𝑡 + 1 = 𝐀𝑘𝑧(𝑡) + 𝐁𝑘𝑢(𝑡) + 𝑑𝑘 +𝑤(𝑡),   𝑡 ∈ 𝑘, 𝑁 − 1 𝑑 ,

where 𝑑𝑘 = −𝐀𝑘𝜇𝑘 − 𝐁𝑘𝜈𝑘 + 𝑟𝑘

• Boundary conditions for covariance steering: 𝑧 𝑘 = 𝑧𝑘 where 𝔼[𝑧𝑘] =
𝜇𝑘, cov 𝑧𝑘, 𝑧𝑘 = 𝚺𝑘

• Remark: The 𝑘-th state space model of the successive linearization 
approach is computed based on information available at stage 𝑡 = 𝑘



Alternative Linearization based on a Reference 
Trajectory
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• Alternatively, linearize around reference state and input trajectories * 
{ ҧ𝑧 𝑡 : 𝑡 ∈ 0, 𝑁 𝑑} and {ത𝑢 𝑡 : 𝑡 ∈ 0, 𝑁 − 1 𝑑}, respectively:

𝑧 𝑡 + 1 = 𝐀(𝑡) 𝑧 𝑡 − ҧ𝑧 𝑡 + 𝐁(𝑡) 𝑢 𝑡 − ത𝑢(𝑡 ) + 𝑟𝑘 + 𝑤(𝑡), 

𝐀 𝑡 = 𝑓𝑥( ҧ𝑧 𝑡 , ത𝑢(𝑡)),

𝐁 𝑡 = 𝑓𝑢( ҧ𝑧 𝑡 , ത𝑢(𝑡)),

𝑟 𝑡 = 𝑓 ҧ𝑧 𝑡 , ത𝑢(𝑡) − 𝐀 𝑡 ҧ𝑧 𝑡 − 𝐁 𝑡 ത𝑢(𝑡)

• The above linearization corresponds to a single time-varying state space 
model and is based on information available at 𝑡 = 0 (computed off-line)

• By contrast, the successive linearization approach relies on the 
successive computation of time-invariant state space models (computed 
on-the-fly, i.e., a new time-invariant model at a time)

Ridderhof, J., Okamoto, K. and Tsiotras, P., 2019, December. Nonlinear uncertainty control with iterative 
covariance steering. In 2019 IEEE 58th Conference on Decision and Control (CDC) (pp. 3484-3490). IEEE



Linear Covariance Steering Problem 
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Problem: Find a control policy 𝜋𝑘 = {𝜙𝑘 𝑡, 𝑧 : 𝑡 ∈ [𝑘, 𝑁 − 1]}, where

𝜙𝑘 𝑡, 𝑧 ≔ 𝜐𝑘 𝑡 + 𝐊𝑘 𝑡 𝑧,

that minimizes the performance index:

𝐽(𝜋𝑘) ≔ 𝔼 ෍

𝑡=𝑘

𝑁−1

|𝜙𝑘 𝑡, 𝑧 |2

subject to the dynamic constraints:

𝑧 𝑡 + 1 = 𝐀𝑘𝑧(𝑡) + 𝐁𝑘𝑢(𝑡) + 𝑑𝑘 + 𝑤(𝑡),   𝑡 ∈ 𝑘, 𝑁 − 1 𝑑

and the boundary constraints:
𝔼[𝑧(𝑘)] = 𝜇𝑘 cov 𝑧 𝑘 , 𝑧(𝑘) = 𝚺k

𝔼[𝑧(𝑁)] = 𝜇d cov 𝑧 𝑁 , 𝑧(𝑁) = 𝚺d
for given 𝜇𝑘, 𝜇d ∈ ℝ𝑛 and 𝚺𝑘, 𝚺d ∈ 𝕊𝑛

++ (positive definite matrices)

Remark 1: Subscript 𝑘 indicates dependence on information available at 
stage 𝑡 = 𝑘 (i.e., the policy 𝜋𝑘 consists of control laws for 𝑡 ∈ [𝑘, 𝑁 − 1]
based on information available at stage 𝑡 = 𝑘) 



Solution to Linear Covariance Steering Problem 
(SDP Convex Optimization Formulation)
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• The 𝑘-th linearized covariance steering can be reduced (relaxed) to a semi-
definite program (SDP)*:

𝚺d − cov 𝑧 𝑁 , 𝑧 𝑁 ≽ 𝟎 (LMI constraint) 

• The solution to the latter problem will furnish the sequence of gains 𝓚𝒌 =
𝐊𝑘 𝑡 : 𝑡 ∈ 𝑘, 𝑁 − 1 𝑑 and 𝝊𝒌 = {𝜐𝑘 𝑡 : 𝑡 ∈ 𝑘, 𝑁 − 1 𝑑} that will solve 

the 𝑘-th linearized covariance steering problem

𝜋𝑘 = 𝜋𝑘 𝓚𝒌, 𝝊𝒌 = {𝜙𝑘 𝑘, 𝑧 ,… , 𝜙𝑘 𝑁 − 1, 𝑧 },

• 𝜙𝑘 𝑡, 𝑧 ≔ 𝜐𝑘 𝑡 + 𝐊𝑘 𝑡 𝑧 (state feedback)

• 𝜙𝑘 𝑡, 𝑍 ≔ 𝜐𝑘 𝑡 + σ𝜏=𝑘
𝑡 𝐊𝑘 𝜏, 𝑡 𝑧(𝜏) where 𝑍 = {𝑧 𝑘 ,… , 𝑧(𝑡)}

(history-based state-feedback)

* Bakolas, E. “Finite-Horizon Covariance Control for Discrete-Time Stochastic Linear Systems 
Subject to Input Constraints,” Automatica, vol. 91, no. 5, pp. 61-68, 2018.



Solution to the Linear Covariance Steering Problem 
(DCP Formulation)
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• The computationally tractable SDP formulation of the covariance steering 
problem relies on the assumption that the latter problem admits a 
solution for the given (hard) terminal conditions on mean and covariance

• An alternative formulation is based on replacing the hard constraints:

cov 𝑧 𝑁 , 𝑧 𝑁 = 𝚺d 𝔼 𝑧 𝑁 = 𝜇d

with a terminal cost term measuring the distance between 𝒩 𝜇d, 𝚺d
and the Gaussian approximation 𝒩 𝜇𝑁, 𝚺𝑁 where 𝜇𝑁 = 𝔼[𝑧(𝑁)], and 
𝚺𝑁 = cov 𝑧 𝑁 , 𝑧(𝑁 ) of the terminal state distribution:

𝐽 𝜋𝑘 ≔ 𝛾𝒲2(𝜌d, 𝜌𝑁) + 𝔼 ෍

𝑡=𝑘

𝑁−1

|𝜙𝑘 𝑡, 𝑧 |2

where 𝛾 > 0 and 𝒲(𝜌d, 𝜌𝑁) is the Wasserstein distance between the  
desired and the actual terminal state distributions*

*Halder, Abhishek, and Eric DB Wendel. "Finite horizon linear quadratic Gaussian density regulator with 
Wasserstein terminal cost." In 2016 American Control Conference (ACC), pp. 7249-7254. IEEE, 2016.



Solution to 𝑘-th Linearized Covariance Steering Problem 
(Difference of Convex Functions Program Formulation)
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• Let the actual terminal state and desired distributions be approximated by 
Gaussian distributions with densities 𝜌𝑁, 𝜌d, respectively. Then 

𝒲2 𝜌d, 𝜌𝑁 = |𝜇d − 𝜇𝑁|
2 + tr Σd + Σ𝑁 − 2 Σ𝑁

ൗ1 2ΣdΣ𝑁
ൗ1 2

ൗ1 2

• It can be shown that 𝐽 𝜋𝑘 can be expressed as a difference of two convex 
functions*

• The covariance steering problem with terminal cost turns out to be a 
Difference of Convex functions Program (DCP) 

• DCPs are computationally tractable (one can solve them by using, for 
instance, the so-called convex / concave procedure)

* I. Balci and E. Bakolas, “Covariance Steering of Discrete-Time Stochastic Linear Systems Based on 

Wasserstein Distance Terminal Cost,” in IEEE Control Systems Letters, doi: 
10.1109/LCSYS.2020.3047132



Unscented Transform for One-Stage Prediction 
of State Mean and Covariance
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• Given a feedback control policy 𝜋𝑘, the closed-loop dynamics of the 
original (nonlinear system) are described by the following equation:

𝑥(𝑡 + 1) = 𝑓𝑐𝑙
𝑘 𝑡, 𝑥 𝑡 + 𝑤(𝑡), 𝑡 ∈ 𝑘, 𝑁 − 1 𝑑

where 𝑓𝑐𝑙
𝑘(𝑡, 𝑥)=𝑓 𝑥, 𝜙𝑘 𝑡, 𝑥 . 

• Instead of propagating uncertainty using the linearized model of the 
nonlinear closed-loop dynamics, we will use the unscented transform*

• The unscented transform predicts future mean and covariance by only 
propagating 2𝑛 + 1 points known as the sigma points:

𝜎𝑘
0 = 𝜇𝑘, 

𝜎𝑘
𝑖 = 𝜇𝑘 + 𝑛 + 𝜆 𝚺𝑘

Τ1 2𝑒𝑖 , if 𝑖 ∈ 1, 𝑛 𝑑

𝜎𝑘
𝑖 = 𝜇𝑘 − 𝑛 + 𝜆 𝚺𝑘

Τ1 2𝑒𝑖 , if 𝑖 ∈ 𝑛 + 1,2𝑛 𝑑

* Wan, Eric A., and Rudolph Van Der Merwe. "The unscented Kalman filter for nonlinear estimation." 
Proc. of the IEEE 2000 Adaptive Systems for Signal Proc., Comm. and Control Symposium, 2000.



Unscented transform for one-stage prediction 
of state mean and covariance
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• Propagate the sigma points 𝜎𝑘
𝑖 (stage 𝑡 = 𝑘) to obtain a new set of 

sigma points ො𝜎𝑘+1
𝑖 (stage 𝑡 = 𝑘 + 1):

ො𝜎𝑘+1
𝑖 = 𝑓𝑐𝑙

𝑘(𝜎𝑘
𝑖),       𝑖 ∈ 0,2𝑛 𝑑

• Compute approximations of the state mean and covariance at stage 
𝑡 = 𝑘 + 1 (one-stage predictions) by using the following equations:

ො𝜇𝑘+1 =෍

𝑖=0

2𝑛

𝛾𝑘
𝑖 ො𝜎𝑘+1

𝑖

෡𝚺𝑘+1 = σ𝑖=0
2𝑛 𝛿𝑘

𝑖 ො𝜎𝑘+1
𝑖 − ො𝜇𝑘+1 ො𝜎𝑘+1

𝑖 − ො𝜇𝑘+1
′
+𝑊𝑘

𝑓𝑐𝑙
𝑘(⋅)

𝜎𝑘
𝑖 ො𝜎𝑘+1

𝑖 ෡𝚺𝑘+1

𝚺𝑘 𝚺𝑘+1
ො𝜇𝑘+1𝜇𝑘



Greedy Covariance Steering Algorithm
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The proposed greedy (nonlinear) covariance steering algorithm* consists of 
the following main steps (repeated until 𝑡 = 𝑁 − 1)

Step 1: Compute linearization (𝐀𝑘 , 𝐁𝑘 , 𝑟𝑘) at stage 𝑡 = 𝑘 based on known 
approximations ො𝜇𝑘 and ෡𝚺𝑘

Step 2: Compute control policy 𝜋𝑘 = {𝜙𝑘 𝑘, 𝑧 ,… , 𝜙𝑘(𝑁 − 1, 𝑧)} that solves 
the 𝑘-th linearized covariance steering problem from ( ො𝜇𝑘 ,෡𝚺𝑘) at 𝑡 = 𝑘 to 
𝜇d , 𝚺d at 𝑡 = 𝑁

Step 3: Add 𝜙𝑘 𝑘, 𝑧 (first control law of local control policy 𝜋𝑘) to the 
“global” control policy 𝜛

Step 4: Compute one-stage predictions ො𝜇𝑘+1 and ෡𝚺𝑘+1 via unscented 
transform

Output: Global control policy for nonlinear covariance steering

𝜛 = 𝜑0(𝑥), 𝜑1(𝑥), … , 𝜑𝑁−1(𝑥), ,        𝜑𝑘 𝑥 = 𝜙𝑘(𝑘, 𝑥)

*Bakolas, Efstathios, and Alexandros Tsolovikos. "Greedy finite-horizon covariance steering for discrete-time 
stochastic nonlinear systems based on the unscented transform," American Control Conference (ACC), 2020.



Numerical Simulations (SDP Formulation)
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• Consider a discrete-time nonlinear stochastic system
𝑥 𝑡 + 1 = 𝑥1 𝑡 + 𝜏𝑥2 𝑡

𝑥2(𝑡 + 1) = 𝑥2 𝑡 − 𝜏(𝛿𝑥1 𝑡 + 𝜁𝑥1 𝑡 3 + 𝛾𝑥2 𝑡 ) + 𝜏𝑢 + √𝜏𝑤(𝑡)

• Boundary conditions: 𝑥0~𝑁(𝜇0, 𝚺0), 𝜇0 = 0, 𝚺0 = diag(0.42, 0.32), 
𝑥d~𝑁 𝜇d, 𝚺d , 𝜇𝑑 = 0 and 𝚺d = diag(0.82, 0.62)

• Parameters for numerical simulations: 𝜁 = 𝛾 = 𝛼 = 0.05, 𝛿 = −1, 𝛽 =
2, sampling period: 𝜏 = 0.1, system parameters: 𝑁 = 100

Figure 1. Three-dimensional illustration of the time-evolution of sample 
trajectories and state covariance of a nonlinear stochastic system

Figure 2. Time-evolution of the sigma 
points of the closed-loop system



Numerical Simulations (DCP Formulation)
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• Consider the discrete-time nonlinear 
stochastic model (unicycle car):

𝑠𝑥 𝑡 + 1 = 𝑠𝑥 𝑡 + 𝑣 𝑡 𝜏cos𝜃 𝑡 + 𝜖𝑥(𝑡)
𝑠𝑦 𝑡 + 1 = 𝑠𝑦 𝑡 + 𝑣 𝑡 𝜏sin𝜃 𝑡 + 𝜖𝑦(𝑡)

𝜃 𝑡 + 1 = 𝜃 𝑡 + 𝑢𝜃 𝑡 𝑣 𝑡 𝜏 + 𝜖𝜃 𝑡
𝑣 𝑡 + 1 = 𝑣 𝑡 + 𝑢𝑣 𝑡 𝜏 + 𝜖𝑣(𝑡)

• (𝑠𝑥, 𝑠𝑦): position vector, 𝜃: heading 

angle, 𝑣: speed

• Goal: Shrink the uncertainty in the 
coordinate 𝑠𝑦, the heading angle 𝜃, 

and the speed 𝑣, while retaining the 
uncertainty in 𝑠𝑥. 

• Terminal covariance (red) is close to 
the desired one even though we only 
considered soft terminal constraints 
(terminal cost 𝒲2 𝜌d, 𝜌𝑁 ) 𝑡

𝑠𝑥

𝑠𝑦 𝑣

𝑡

𝜃



Model-free Covariance Steering Based on 
Variational Gaussian Process Regression
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Covariance Steering Based on Data-Driven 
Predictive Models
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• The previous tools for covariance steering assumed knowledge of a state 
space model of the uncertain system

• Such models may not be available a priori in many applications (e.g., the 
system dynamics may change during system operation)

• Proposed approach: Compute data-driven prediction models by learning 
the system dynamics from available data (experiment, simulations) and 
use these models for control design purposes

• In particular, use sparse variational Gaussian Process regression tools to 
capture the effects of model uncertainty and process noise (small 
computational / inference cost)



Brief Introduction to Gaussian Processes for 
(non-parametric) Modeling

-19-

• Unknown function 𝑓:ℝ𝑛 → ℝ with noisy 
observations at known locations 𝑥𝑖:

𝑦𝑖 = 𝑓 𝑥 + 𝜖𝑖

• Observation likelihood:

𝑝 𝑦𝑖 𝑓 𝑥𝑖 = 𝒩(𝑦𝑖|𝑓 𝑥𝑖 , 𝜎𝜖
2)

• Data: 𝑁 observations at 𝑁 locations: 𝑦 =∈ ℝ𝑁, 𝑿 = 𝑥1, … , 𝑥𝑁
T ∈

ℝ𝑁×𝑛 𝑦1, … , 𝑦𝑁
T

Why Gaussian Processes? 
o Flexibility (non-parametric approach: distributions over functions)
o Provide uncertainty estimates 
o Degrade gracefully (they know what they don’t know)



Basic Concepts and Steps of GP regression

• Assume that 𝑓 belongs to a family of functions with a Gaussian Prior: 

𝑓 𝑥 ~𝑁 𝑓 𝑥 𝑚 𝑥 , 𝑘 𝑥, 𝑥

• Prior over the vector 𝐟 = 𝑓 𝑥1 , … , 𝑓 𝑥𝑁
T: 

𝑝 𝐟; 𝑿 = 𝒩(𝐟|𝑚 𝑥 , 𝑘 𝑥, 𝑥 )

• Joint density of 𝒚 and 𝐟:  𝑝 𝒚, 𝐟; 𝑿 = 𝑝 𝒚|𝐟, 𝑿 𝑝(𝐟; 𝑿)

• Marginalize out 𝐟 to obtain marginal likelihood:

𝑝 𝒚;𝑿 = ∫ 𝑝 𝒚 𝐟;𝑿 𝑝 𝐟; 𝑋 d𝐟 = 𝒩(𝒚|𝑚 𝑿 , 𝑘 𝑿, 𝑿 + 𝜎𝜖
2𝐼))

• Optimize hyperparameters Θ⋆ = {𝜃𝑚, 𝜃𝑘 , 𝜎𝜖}:

Θ⋆ = argmin
Θ
(−log 𝑝(𝒚;𝑿) )

where 𝜃𝑚, 𝜃𝑘 are the mean and kernel hyperparameters

-20-



Basic Concepts and Steps of GP regression

• Prediction (predict 𝑦∗ on a test location 𝑥∗):

𝑝 𝑦∗; 𝑥∗, 𝒚, 𝑿 = ∫ 𝑝 𝒚∗, 𝒚; 𝑥∗, 𝑿 d𝒚 = 𝑁(𝒚∗|𝜇∗, 𝜎∗)

– 𝜇∗ = 𝑚 𝑥∗ + 𝑘 𝑥∗, 𝑿 𝑘 𝑿, 𝑿 + 𝜎𝜖
2𝐼 −1(𝒚 − 𝑚 𝑿 )

– 𝜎∗ = 𝑘 𝑥∗, 𝑥∗ − 𝑘 𝑥∗, 𝑿 𝑘 𝑿, 𝑿 + 𝜎𝜖
2𝐼 −1𝑘 𝑿, 𝑥∗

• Inference: invert 𝑁 × 𝑁 matrix (scales with cube of data size 𝑁). Does not 
scale to more than a few thousand data points

-21-

• Example: 
𝑚(𝑥) = 𝑐,

𝑘 𝑥, 𝑥′ = 𝜎𝑓
2exp(−

1

2
𝑥 − 𝑥′ 𝑇𝑳−1(𝑥 − 𝑥′))



Scaling GP regression to Big Data: Sparse 
Variational GP Regression 

• Sparse approximation of GPs (goal: reduce cost of inference)

• Introduce 𝑀 inducing locations/values (𝑀 < 𝑁):

𝒁 = 𝑧1…𝑧𝑀
T,                 𝒖 = 𝑓 𝑧1 , … , 𝑓 𝑧𝑀

T

• Joint density:  𝑝 𝒚, 𝐟, 𝒖 = 𝑝 𝒚 | 𝐟; 𝑿 𝑝 𝐟 |𝒖;𝑿, 𝒁 𝑝 𝒖; 𝒁

o 𝑝 𝐟 |𝒖;𝑿, 𝒁 = 𝒩 𝐟 ෤𝜇, ෩𝚺), where 

– ෤𝜇 𝑖 = 𝑚 𝑥𝑖 + 𝑘 𝑥𝑖 , 𝒁 𝑘 𝒁, 𝒁 −1(𝑢 − 𝑚 𝒁 )

– ෩𝚺
𝑖𝑗
= 𝑘 𝑥𝑖 , 𝑥𝑗 − 𝑘 𝑥𝑖 , 𝒁 𝑘 𝒁, 𝒁 −1 𝑘 𝒁, 𝑥𝑗

o Gaussian prior on 𝒖: 𝑝 𝒖; 𝒁 = 𝒩 𝒖 𝑚 𝒁 , 𝑘(𝒁, 𝒁))

• Variational posterior:  𝑞 𝐟, 𝒖 = 𝑝 𝐟 |𝒖;𝑿, 𝒁 𝑞(𝒖)

where 𝑞 𝒖 = 𝒩 𝒖 𝑚𝑢, 𝑺𝒖) (𝑚𝑢, 𝑺𝒖: are parameters)
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Scaling GP regression to Big Data: Sparse 
Variational GP Regression

• Marginalize out 𝒖: 
𝑞 𝐟 𝑚𝑢, 𝑺𝒖; 𝑿, 𝒁 = ∫ 𝑝 𝐟 𝒖;𝑿, 𝒁 𝑞 𝒖 d𝒖 = 𝒩(𝐟|𝜇 𝑿 , 𝚺(𝑿, 𝑿))

where 𝜇 𝑿 𝑖 = 𝜇𝑓(𝑥𝑖) and 𝚺(𝑿,𝑿) 𝑖,𝑗 = 𝚺𝑓(𝑥𝑖 , 𝑥𝑗), with 𝜇𝑓 and 𝚺𝑓
defined as before* (based on 𝐮, 𝒁)

• Find optimal variational parameters 𝒁,𝑚𝑢 and 𝑺𝒖 and hyperparameters

that maximize the following lower bound:

log 𝑝 𝒚 𝑿) ≥ 𝔼𝑞 𝐟,𝒖 log( 𝑝(𝒚, 𝐟, 𝒖)/𝑞(𝐟, 𝒖)) = ℒ

where ℒ = σ 𝔼𝑞 𝑓𝑖|𝑚,𝑺,𝑥𝑖,𝒁 [log 𝑝 𝑦𝑖 𝑓𝑖 − KL(𝑞(𝒖)||𝑝(𝒖))]

• Predict 𝑦∗ on a test location 𝑥∗: 

𝑝(𝑦∗; 𝑥∗, 𝑚, 𝑺, 𝒁)) = 𝒩(𝑦∗|𝜇𝑓 𝑥∗ , 𝚺𝑓 𝑥∗, 𝑥∗ + 𝜎𝜖
2)
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*Tsolovikos, Alexandros, and Efstathios Bakolas. "Nonlinear Covariance Steering using Variational 
Gaussian Process Predictive Models." arXiv preprint arXiv:2010.00778 (2020).



System Identification using SVGPs

• Given:

1. Given a black box simulator corresponding to the originally unknown  
discrete-time nonlinear stochastic system: 

𝑧 𝑡 + 1 = 𝑔 𝑧 𝑡 , 𝑢 𝑡 + 𝜖 𝑡

2. Observation data at known locations 𝑥𝑖 = [𝑧 𝑡𝑖 ; 𝑢(𝑡𝑖)]:

𝑦𝑖 = 𝑔 𝑧 𝑡𝑖 , 𝑢 𝑡𝑖 + 𝜖 𝑡𝑖 ,  

-24-

• Objective:

Use data 𝐷 = 𝑦𝑖 , 𝑧𝑖 , 𝑢𝑖 𝑖=1
𝑁 to learn a SVGP-based prediction model for 

the system dynamics:

𝑧 𝑡 + 1 = 𝐺 𝑧 𝑡 , 𝑢 𝑡 + 𝑤(𝑡)

where 𝐺 𝑧 𝑡 , 𝑢 𝑡 ≔ 𝜇𝑓([𝑧 𝑡 ; 𝑢 𝑡 ]) and

𝑤 𝑡 ~𝑁(𝑤𝑡|0, 𝚺𝑓 𝑧 𝑡 ; 𝑢 𝑡 , 𝑧 𝑡 , 𝑢 𝑡 + 𝜎𝜖
2)

Tsolovikos, Alexandros, and Efstathios Bakolas. "Nonlinear Covariance Steering using Variational 
Gaussian Process Predictive Models." arXiv preprint arXiv:2010.00778 (2020).



Modifications to Model-Based Greedy 
Nonlinear Covariance Steering Algorithm

• Successive linearization of the SVGP-based predictive model:

𝑧 𝑡 + 1 = 𝐴𝐺𝑃𝑧 𝑡 + 𝐵𝐺𝑃𝑢 𝑡 + 𝑑𝐺𝑃

𝐴𝐺𝑃 =
𝜕

𝜕𝑧
𝐺 𝜇𝑧 𝑡 , 𝜇𝑢 𝑡 ,   𝐵𝐺𝑃 =

𝜕

𝜕𝑢
𝐺(𝜇𝑧 𝑡 , 𝜇𝑢 𝑡 )

𝑑𝐺𝑃 = −𝐴𝐺𝑃𝜇𝑧 𝑡 − 𝐵𝐺𝑃𝜇𝑢 𝑡 + 𝐺(𝜇𝑧 𝑡 , 𝜇𝑢(𝑡))

• The unscented transform will also be adjusted*. In particular, 

– GP-based predictive model will be used for sigma points propagation:  

ො𝜎𝑘+1
𝑖 = 𝐺𝑐𝑙

𝑘 (𝜎𝑘
𝑖 ), 𝐺𝑐𝑙

𝑘 (𝑡, 𝑧):=𝐺 𝑧, 𝜙𝑘 𝑡, 𝑧

– The noise covariance used in the computation of the next stage 
covariance will also be adjusted appropriately

෡𝚺𝑘+1 =෍

𝑖=0

2𝑛

𝛿𝑘
𝑖 ො𝜎𝑘+1

𝑖 − ො𝜇𝑘+1 ො𝜎𝑘+1
𝑖 − ො𝜇𝑘+1

′
+𝑊𝑘

where 𝑊𝑘 = 𝚺𝑓 𝑧 𝑡 ; 𝑢 𝑡 , 𝑧 𝑡 ; 𝑢 𝑡 + 𝜎𝜖
2𝐼

* Ko, Jonathan, et al. "GP-UKF: Unscented Kalman filters with Gaussian process prediction and observation models." 2007 

IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007.
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Simulation Results 

• Consider again the system:

𝑠𝑥 𝑡 + 1 = 𝑠𝑥 𝑡 + 𝑣 𝑡 𝜏cos𝜃 𝑡 + 𝜖𝑥(𝑡)
𝑠𝑦 𝑡 + 1 = 𝑠𝑦 𝑡 + 𝑣 𝑡 𝜏sin𝜃 𝑡 + 𝜖𝑦(𝑡)

𝜃 𝑡 + 1 = 𝜃 𝑡 + 𝑢𝜃 𝑡 𝑣 𝑡 𝜏 + 𝜖𝜃 𝑡
𝑣 𝑡 + 1 = 𝑣 𝑡 + 𝑢𝑣 𝑡 𝜏 + 𝜖𝑣(𝑡)

• (𝑠𝑥, 𝑠𝑦): position vector, 𝜃: heading 

angle, 𝑣: speed

• Data from a black box simulator are 
used  for training a GP-based prediction 
model (use squared exponential kernel)

• Goal: Shrink the uncertainty in the 
coordinate 𝑠𝑦, the heading angle 𝜃, and 

the speed 𝑣, while retaining the 
uncertainty in 𝑠𝑥. 
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GP-based model Actual model



Remarks on numerical simulations 

• Left figures: results based on the SVGP-
prediction models; Right figures: results 
based on model-based covariance steering 
(SDP formulation)

• The uncertainty predicted by the SVGP model 
is very close to the uncertainty predicted by 
the model-based approach. 

• The actual terminal distribution obtained 
using SVGP model (visualization based on red 
particles from 400 Monte Carlo realizations) 
is more concentrated near the mean than in 
the model-based approach (right figure).

• The covariance steering based on the SVGP 
model is more cautious than model-based
covariance steering.
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Summary & Concluding Remarks
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• We discussed ways to address covariance / distribution steering
problems for discrete-time nonlinear stochastic systems using model-
based and model-free (data-driven) approaches

▪ successive linearization of system dynamics (based on either a
given state-space model or a SVGP-based predictive model)
along the ensuing mean (state and input) trajectories

▪ the solution of a sequence of linearized covariance steering
problems which are either associated with SDP (convex)
programs or difference of convex functions programs

▪ the unscented transform for the computation of one-stage
predictions of the state mean and state covariance



Opportunities for Future Research

• Study the partial state information case for both the model-based
and the model-free cases

• Improve performance of linearized covariance steering algorithms
(consider different control policy parametrizations)

• Explore different linearization methods in order to reduce the
frequency of linearization

• Explore better ways to improve scalability and computational
efficiency, and make connections with nonlinear MPC methods
(infinite-horizon case)

• Study the distribution steering problems in the class of multimodal
distributions
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