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A simple game

Distribute agents amongst two blocks

Desired distribution µd = [0.5, 0.5].

Rules:

Each agent is identity free

Decentralized law, i.e. no central computer

No inter-agent communication
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Solution

Solution: Make it Stochastic!

P =

[
p11 = H p12 = T
p21 = H p22 = T

]

Con: Agents keep transitioning!

Gist of Our Work

Control agent distribution when agents follow some Markov process
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Mean-field model 101

Graph based methods popular in multi-agent systems.

Alternative approach: All agents follow same dynamics, independent

of agent identities
N→∞−→ �uid approximation = mean-�eld

model/Macroscopic model.

Each agent follows an identical Markov process =⇒ mean-�eld
behavior determined by the Kolmogorov forward equation.

Model is independent of agent population size, therefore, scalable.
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Alternative viewpoint

Classical ODE (Deterministic) can be seen as evolution of Dirac delta
function

ẋ(t) = f (x(t), u(t)).

Markov process is evolution of distributions (pdfs):

µ̇(t) = F (µ(t), k(t)).
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Kolmogorov Forward Equation

µ̇(t) = F (µ(t), k(t)). (1)

States (µ) are probability distributions, transition rates/probabilities as
controls k

Stabilizability: System is stabilizable if given µd , there exists a map
k(·) such that µd is asymptotically stable for (1)

Challenge: µ ∈ Σ - in�nite dimensional.
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Potential applications

Redistributing large number of agents for environmental monitoring,
surveillance, autonomous construction.

Harvard University/Michael Rubenstein
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Goals

Stabilizability - Existence of control law(s) k to stabilize desired
distributions.

Equilibrium of the Microscopic model - Zero state transitions at
equilibrium to minimize energy expended by agents at equilibrium.

Model

Discrete-Time, Continuous State-Space Markov Process (Rn or some
manifold)
Ideal for modeling robots as robots don't evolve on graphs
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Problem Formulation

Agent Model

xn+1 = F (xn, un), x0 ∈ Ω

xn ∈ Ω, un ∈ U, F : Ω× U →
Rd

(un)∞n=1 ∈ U such that
F (xn, un) ∈ Ω

Assumptions

Domain Ω ⊂ Rd is closed, bounded, connected, δΩ is `regular'

Controls U ⊂ Rd is closed, bounded (compact)

F is continuous, C 1, non-singular

Locally controllable condition: there exists r > 0 such that, for every
x ∈ Ω, Br (x) ∩ Ω ⊆ F (x ,U).
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Problem Formulation

N - number of `identity free agents

The empirical distribution of the N agents is 1
N

∑N
k=1 δxkn

Goal:

1

N

N∑
k=1

δxk0
n→∞−→ 1

N

N∑
i=1

δxk,d ≈ fd ∈ L∞(Ω)

1
N

∑N
k=1 δxkn not a state variable of the agent dynamics; in order to

make it a state variable:

Take N →∞
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Problem Formulation I

Forward equation = Mean Field Model:

µn+1 = Pµn, µ0 ∈ P(Ω) = Probability measures on Ω

Problem

Given µd ∈ P(Ω) and F can we construct an operator P such that

limn→∞Pnµ0 = µd?

such that µd is exponentially stable equilibrium.

Theorem

There exists a control law that stabilizes a class of µd !
Any µd with density fd , f

−1
d ∈ L∞(Ω) = {g : g is bounded a.e.}.
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Solution

Transition kernel ∼ Transition Probability in discrete state space
K (x ,W ) - From x , the probability of choosing a set of controls W

Proved existence of K such that fd ∈ L∞(Ω) can be stabilized

For the discretized model, constructed optimal K to drive
||f0 − fd ||2 → 0 exponentially

Open-Loop Problem for the mean-�led model, state feedback for the
agent system
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Problem Formulation II

Problem II

Given µd ∈ P(Ω) and F can we contruct an operator P such that

lim
n→∞

Pnµ0 = µd , µ0 ∈ P(Ω)

P = I at µd =⇒ agents stop switching at µd

Forward equation = Mean Field Model:

µn+1 = P(µn)µn, µ0 ∈ P(Ω) = Probability measures on Ω
P is now nonlinear, function of the current distribution µn

Theorem

There exists a time-dependent control law that satis�es above conditions.

Any µd with density fd ∈ L∞(Ω) = {g : g(x) <∞ a.e.}
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Stochastic Feedback Law

Let k : Ω× U → [0, 1] be in L∞(Ω× U) and

k(x , u)

{
> 0 for m-a.e. x ∈ Ω, u ∈ U st. F (x , u) ∈ Ω;

= 0 otherwise;∫
U
k(x , u)du = 1 for m-a.e. x ∈ Ω.

Assuming F (x , 0) = x (can be generalized to F (x ,V (x)) = x).

Kµ(x ,W ) = afµ(x)

∫
W

k(x , u)du + (1− afµ(x))δ0(W ).

af (x) =

{
f (x)−fd (x)

f (x) for m-a.e. x if f (x)− fd(x) > 0;

0 otherwise.

Closed-Loop control for the Mean-Field model.
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Operator induced by Kµ

De�ne P via K : Ω× B(U)→ [0, 1].

Definition (Forward operator (measures))

P : P(Ω)→ P(Ω)

(Pµµ)(E ) =

∫
Ω

∫
U
χE (F (x , u))Kµ(x , du)dµ(x)

Note: χE (z)

{
= 1 if z ∈ E
= 0 otherwise
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Solution

Theorem

If P preserves distributions with L2 densities then fd is globally

asymptotically stable in the L1(Ω,m) norm, i.e.

‖fn − fd‖1 → 0 as n→∞.
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N-Agent System

N agents on Ω evolving according to K .

Empirical measure mN(x) = 1
N

∑N
k=1 δxk . =⇒ Does not have a

density

Smoothen the measure by convolving with a Mollifer.
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Mollifier

Standard bump function:

φ(x) =

e
−
(

1

1−‖x‖2

)
, x ∈ (−1, 1),

0, otherwise.

Change the support, for some h > 0

φh(x) = h−2φ
(x
h

)
.∫

φh = 1 for any h.

(Gif)
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Mollifier

Convolution

Convolve the Dirac measure with a smooth (C∞) function φ:

φ ∗mN =

∫
Ω
φ(x)dmN =

1

N

N∑
i=1

φ(x − xk).
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Simulations: Mean Field Model & N = 100

Shiba Biswal (UCLA) Distribution Control Joint work with K. Elamvazhuthi (UCLA) and S. Berman (ASU) 20 / 24


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}
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Simulations: Mean Field Model & N = 500

Shiba Biswal (UCLA) Distribution Control Joint work with K. Elamvazhuthi (UCLA) and S. Berman (ASU) 21 / 24


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}




Simulations: Mean Field Model & N = 1500
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Agent Trajectories
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Figure: N = 100
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Figure: N = 500
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Figure: N = 1000
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Thank you

Questions?

Shiba Biswal, Karthik Elamvazhuthi, and Spring Berman. �Target Distribution Stabilization

Using Local Density Feedback for Multi-Agent Systems.�, 2022. Accepted to IEEE Transactions
on Automatic Control.

Shiba Biswal, Karthik Elamvazhuthi, and Spring Berman. �Stabilization of nonlinear

discrete-time systems to target measures using stochastic feedback laws�, 2021. IEEE
Transactions on Automatic Control.

Shiba Biswal, Karthik Elamvazhuthi, and Spring Berman. �Stabilization of Multi-Agent Systems

to Target Distributions using Local Interactions.� Submitted to the 2020 International
Symposium on Mathematical Theory of Networks and Systems (MTNS), Cambridge, UK.

Shiba Biswal, Karthik Elamvazhuthi, and Spring Berman. �Fastest Mixing Markov Chain on a

Compact Manifold.� IEEE Conference on Decision and Control (CDC), Nice, France, 2019.
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