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Optimal Decision-Making Under Uncertainty

* The need to make decisions under uncertainty arises often in engineering
and scientific applications
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Optimal Decision-Making Under Uncertainty

* The need to make decisions under uncertainty arises often in engineering

and scientific applications

Airdrop Package Delivery Using Ballistic Parachute

Nominal
Path

Predicted Dispersion

Q: Where should the package be dropped?
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Optimal Decision-Making Under Uncertainty

* The need to make decisions under uncertainty arises often in engineering
and scientific applications

Airdrop Package Delivery Using Ballistic Parachute Pharmacokinetics
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Data from Allen et al., 1980

Q: What dose should we give patients?

Predicted Dispersion

Q: Where should the package be dropped?




Optimal Decision-Making Under Uncertainty

f(x)
Su(x) —>
Initial density over uncertain State transformation “Pushed-forward” density and
states and parameters under control selection u objective function

Choose u that maximizes E ¢ (X)|X ~ Psf| = / Psf (x)g(x)dx
S(Q)
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Optimal Decision-Making Under Uncertainty

f(x)
Su(x) —>
Initial density over uncertain State transformation “Pushed-forward” density and
states and parameters under control selection u objective function

Choose u that maximizes E ¢ (X)|X ~ Psf| = / Psf (x)g(x)dx
S(Q)

Okay...but how do we compute P, f (x) for nonlinear/non-Gaussian systems?

Georgia
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Forward Density Propagation for Uncertain Systems

Frobenius-Perron (FP) Operator Monte Carlo Simulation
5:X > X o
—f PSfd‘u B .[ fd'u (measure gtm
A S—1(4) preserving) o
p p
Polynomial Chaos v — z yi; (8) = n(x) Xp = z Y ()
j=0 ] =0 Georgia ,“
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The Koopman Operator

g:R" >R S:R" —

Ksg(x) =g (S (x))

Qn

State Map

» Properties of Koopman operator of a system reveals properties of the underlying system

» Recent advancement in the literature for approximating via data-driven methods

» Extended Dynamic Mode Decomposition (Williams et al. 2014, Korda and Mezic 2018) Ge?{%ﬁ@
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Relationship with Uncertain Systems




Benefits of the Koopman Expectation

E [Kg (X)X ~ f] =/Qf(w)/Cg(w)dw

Pull-Back (Koopman) Expectation

VS.

Elg(0) X ~Psf] = [ Psf(@)g(a)da

S(€2)

Push-Forward (FP) Expectation

 Improved numerical stability

« Simpler evaluation
« Domain of integration is initial domain Q vs its image S(Q)

 Provides well-defined structure of data, leading to simpler solution approaches (e.g., quadrature
integration)

Halder and
Bhattacharya, 2011

Initial Unce!

k (N/m)
nt, k (N/m)

Spring Constant,
o
Spring Consta:

Meyers et al., ACC 2019. Georgia @
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Benefits of the Koopman Expectation

Elg(0) X ~Psf] = [ Psf(@)g(a)da

E I (X)X ~ f] = | J(@)Kg (@) da

Pull-Back (Koopman) Expectation

Push-Forward (FP) Expectation

Halder and

 Improved numerical stability
Bhattacharya, 2011

« Simpler evaluation
« Domain of integration is initial domain Q vs its image S(Q)

 Provides well-defined structure of data, leading to simpler solution approaches (e.g., quadrature
integration)

« Computing expectation of multiple observables with varying supports in space-time
» Pull-back each to a common domain domain — Single, vector-valued expectation calculation

Meyers et al., ACC 2019. Ge?&iﬁ&
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Benefits of the Koopman Expectation

E [Kg(X)|X ~ f] = fgf(@ Kg (z) dz vs. Monte Carlo Simulation

Pull-Back (Koopman) Expectation

X

—_

o
IS

w

—e—FP
—e—Koopman | |
MC

« Faster convergence

 Error bounds / tolerancing via quadrature
integration

N
)

— W o
P T T

o
W

Average Relative Error over all ¢g,+(%)

* Downside: Koopman expectation assumes
104 103 10°

NO Process noise.
Number of Points

 Application limited to systems which have only
parametric uncertainty

—_ O
]
w

Meyers et al., ACC 2019. Ge?&iﬁ&
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Benefits of the Koopman Expectation

E [Kg (X)|X ~ ] =fo(w>’C9<fL’>dw V. Generalized Polynomial
Chaos (gPC)

Pull-Back (Koopman) Expectation

* In general, they are not the same

« However, there is an equivalence between the Koopman expectation and non-intrusive
gPC when computing the mean value of an observable function g(x)

1
gPC computation of
Expectation J 1 (f p (f)) I’b/f(f)p(f)df mean of transformed
Q RV
H_/
9(s(£®)) = xgw)

oopman [ xgGf (dx =
Q




Benefits of the Koopman Expectation

E [Kg (X)X ~ f] =/Qf(w>’C9<w>dw vs. Generalized Polynomial
Chaos (gPC)

Pull-Back (Koopman) Expectation

* In general, they are not the same

« However, there is an equivalence between the Koopman expectation and non-intrusive
gPC when computing the mean value of an observable function g(x)

« Koopman advantage: When computing higher-order moments, Koopman method
(redefining observable) requires a lot less integrals than gPC

- gPC advantage: You can sample from transformed distribution (Koopman expectation
only provides expected values)



* In practice, we do not compute Koopman operator X

* Instead, we compute action of the Koopman operator on observable
functions of interest at discrete points in state space Ksg(x;)

« Then integrals can be approximated via quadrature

Note: We can also use other

N
j Ksg (x)fo (x)dx ~ Z Ksg (Xi)fo (xi)Wi methods such as Monte Carlo
[0 =1

integration to compute this as well.

Ksg(x;): From each discrete sample x;, forward simulate and compute observable function

fo(x;): Initial uncertainty PDF evaluated at sample x;

Wi. Quadrature Welght Meyers et al., ACC 2019.



Probabilistic Optimization via the Koopman Expectation

« We wish to solve the following optimization problem:

u” = arg min f Ksg(x,u)fo(x)dx Minimize expected value of cost
ueu 5
subject to:
f Kse(x,u)fo(x)dx <r Satisfy chance constraints
Q

Gegarrgiﬁ ,\
ech|/
Meyers et al., ACC 2019. R — m;x%



« We wish to solve the following optimization problem:

uceu

U’ = arg min f Ksg(x,u)fo(x)dx
Q

[ - Key point: Because cost and constraint
SRl Uk functions pulled back to initial time via
Koopman operator, f,(x) is never
explicitly propagated forward in time.

f Kee(x,w)fo(x)dx <r
Q

Meyers et al., ACC 2019.



Example 1: Bouncing Ball

Bouncing ball in 2D with uncertain coefficient of restitution.
Compute expected cost value (no optimization).

System:

T = [x] = [O ], To=2m,To =2m/s,zo =50m, g = 0m/s

z [m]

st — s whenz=0

Uncertainty:

a~N(0.9,0.02) truncated at 0.84 and 1

Cost:

. %\ 2 Georgia @
x) = (2 — 2
g(x)=( ) Gerlach et al., 2020, https://arxiv.ora/pdf/2008.08737.pdf Tech||
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https://arxiv.org/pdf/2008.08737.pdf

Example 1: Bouncing Ball

Bouncing ball in 2D with uncertain coefficient of restitution.

Compute expected cost value (no optimization).

Expected Value

W
)]

38

w
~

35

Monte Carlo

Koopman

— - —-- Analytical

Only 15 simulations

required

/

W

250

500
Monte Carlo Simulations

750

1000

z [m]

x [m]
| Analytical | Monte Carlo
No. of Simulations 100,000 15
Exp. Value (m?) 36.008 35.782 36.008
Computation Time (s) - 2.060 0.0012

Georgia
. . Tech
Gerlach et al., 2020, https://arxiv.org/pdf/2008.08737.pdf
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https://arxiv.org/pdf/2008.08737.pdf

Example 1: Bouncing Ball

Bouncing ball in 2D with uncertain coefficient of restitution.

System: Initial Conditions to Optimize:

xo € [—100m, 0 m]

. |zl |0
€r = 5| = | =g Zo € [1m/s,3m/s]
20 € [10 m, 50 m]

3T = a3~ whenz=0
Uncertainty:
a~N(0.9,0.02) truncated at 0.84 and 1

Cost:

g (@)= (2~ 2")

Gerlach et al., 2020, https://arxiv.org/pdf/2008.08737.pdf

z [m]

0 5 ’ 10 15 20 25
X [m]

Gradient-Based optimization to solve u* = arg mm J Keg(x,u)fo(x)dx

Georgia ﬂ
Tegc':h L@

CREATING THE NEXT



https://arxiv.org/pdf/2008.08737.pdf

Example 1: Bouncing Ball

Bouncing ball in 2D with uncertain coefficient of restitution.

System: Initial Conditions to Optimize:
. xo € [—100m, 0 m]
. || |0
‘S 31 7 |—g Zo € [1m/s,3m/s]
20 € [10 m, 50 m]
37 = _a2~ whenz=0

Uncertainty:

z [m]

10

15

a~N(0.9,0.02)  truncated at 0.84 and 1 X [M]
Cost: Optimal Solution produces expected cost of

W 8.3x1072 in 0.12 sec (Julia implementation)
g(x) = (2 —2")

Gerlach et al., 2020, https://arxiv.org/pdf/2008.08737.pdf

20

25

Georgia “
Tegch Q
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Example 1: Bouncing Ball

Particular observable functions defined to “extract” raw moments
(which can then be converted to central moments)

J> (x) — xz 2" raw moment j:l(sgi(x,u)fo(x)dx
J —_
ga (x) — 53 3 raw moment %

X [m]

Georgia @
Tech
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https://arxiv.org/pdf/2008.08737.pdf

Example 1: Bouncing Ball

Particular observable functions defined to “extract” raw moments

(which can then be converted to central moments)
g1(x) =x mean
g2(x) =x* 2 raw moment f Ks gy (x,u) fy (x)dx
@ €
g3(x) = x3 3 raw moment =
Central Moment Monte Carlo Koopman
2 0.030¢2  9.007e—2 + 3.878¢—5 ; — : T
3 3.878e—1 3.924e—1 £ 1.776e—3 x [m]
4 3.214 3.428 + 1.536e—3
5 38.116 44.536 + 3.733e—3 Koopman-based method produces solution
with same accuracy but runs 77,000x faster.
10M simulations, 225 simulations, |
264 sec 3.4 ms Ge‘.’r;%'ﬁ@

Gerlach et al., 2020, https://arxiv.org/pdf/2008.08737.pdf
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Example 2: Airdrop Mission Planning

High-Altitude Low-Opening (HALO) Airdrop

.

Uncertainty: Winds, parachute drag,
package release dynamics

Optimize: Release point, aircraft
heading, opening altitude

Leonard et al., J. Guidance, Control, and Dynamics, 2020.

Aircraft
Release

Stabilization X Z
Point

Main Parachute
Deployment (z,)

—

—

.
-'.
.
.
-
.
-
-
.
.
.
.
.
-
.
-

Deceleration from
Release

Quasi- Steady
Drogue Descent

Drogue to Main

Parachuwe Tramsidon

Quasi-Steady Main
Parachute Descent

Georgia “
Tegch Q
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Example 2: Airdrop Mission Planning

High-Altitude Low-Opening (HALO) Airdrop

Cost Function g(x, y)
Uncertainty: Winds, parachute drag,

:
package release dynamics o0 %
f 7000 80
€ 70
= . . . . E 6500 60 o
Optimize: Release point, aircraft 7. 3
heading, opening altitude E 0l
~ 5500
30
5000 Desired 20
impact 10
~ ~ 4500 _ location
ED[G(X)|u] - L G(x)fxy (x’ y|u)de (Cd)fti)m (wm)fiv, (wz//) dx 3500 4000 450(;3 sooo[ j5500 6000 6500  °
asting [m
Choose drop location (x, y) that
minimizes this expected value
Georgia |
Tegc’:h Q

Leonard et al., J. Guidance, Control, and Dynamics, 2020. CREATING THE NERT



Example 2: Airdrop Mission Planning

High-Altitude Low-Opening (HALO) Airdrop

8500

8000

7500

Northing [m]
)
8

6500

6000

5500

Leonard et al., J. Guidance, Control, and Dynamics, 2020.

Minimum Expected Value: 26-248

—» Dect.CARP
—» Prob. CARP

4000 4500 5000 5500 6000
Easting [m)]

— 100

190

180

170

60

50

40

30

20

10

Expected Value

Northing [m]

Deterministic planner does not account for uncertainty,
drops straight into canyon (lots of bad outcomes)

Probabilistic planner drops in flatter region — gives up best-
case performance to protect against lots of poor outcomes

e MC Impacts 1001

901
Probabilistic 801
701
601

50F

% of Sticks

40t

. 30
§

201

Wi
- | :
" Deterministicy ¥ ©
¥ | ¥

‘Vr‘!?h d f

10} Deterministic CARP -
4 Probabilistic CARP Georgia
4000 4500 5000 5500 6000 6500 0 20 20 60 80 100 Tech Wi
Easting [m] Expected Cost CREATING THE NEXT



Example 3: Maneuver-Based Trajectory Planning

Use library of (uncertain) maneuvers to
construct path that minimizes expected
cost while satisfying chance constraints

glei{}EU(Hu(xo» to))]
s.t. P(Hy(xo,t0) € F) <7

H, gives the state history
under the controller u

Koopman operator used to pull-back
expected cost and constraint values
for each maneuver

Gutow and Rogers, IEEE RAL, 2020.

Library:

Single Maneuver Under
Parameter Uncertainty:

Each realization has probability of
occurring given joint distribution on
parameters or ICs

nge (meters)

Crossra

1.00 -

0.75 A

0.50 4

0.25 A

0.00

—0.25 A

—0.50 1

—0.75 A

—1.00 A

0.0 0.5 1.0 L5 2.0 2.5
Downrange (meters)

0.0 0.5 1.0 1.5 2.0 2.5

Georgia “
Tegch Q
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Example 3: Maneuver-Based Trajectory Planning

“Expected State Planner”

« Chain together next primitive from
expected state of last one

» Use Koopman operator to pull back
expected costs and constraint violations 14
of candidate paths

» Use of primitives + Koopman allows UQ
without real-time simulation

0 1 2 3 4

A* or dynamic programming can

be used to solve for optimal path.
Gutow and Rogers, IEEE RAL, 2020.




Example 3: Maneuver-Based Trajectory Planning

Yields planner with tunable risk thresholds

10 runs, 1.0% risk tolerance

3.5 9 I
3.0 1
_. 2.5
E
& 2.0
<
ol
@
o 151
o
1.0
0.5
0.0

Downrange (m)

100 runs, 25.0% risk tolerance

Crossrange (m)

1.0

0.5 -

0.0 -

Downrange (m)

Gutow and Rogers, IEEE RAL, 2020.

Crossrange (m)

1 runs, 1.0% risk tolerance

=

Crossrange (m)

o
L

v
L

IS
L

w
L

N
L

-
s

o
L

2 4 6
Downrange (m)

1 runs, 10.0% risk tolerance

(Y
Q

0 2 4
Downrange (m)

Crossrange (m)

1% tolerance
64 —— 10% tolerance
—— 50% tolerance

Downrange (m)
» Vehicle has 40% chance of being destroyed
every 0.25 sec inside region 1

» Vehicle has 2.5% chance of being destroyed
every 0.025 sec inside region 2

» Trajectory adapts based on risk tolerance

Tech

Georgia @1
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Probabilistic Inverse Problems

So far, we have tried to optimize vector of initial inputs given desired
expected values of observables

[ Qf"(") b )

Qrrrnnnnnnnnnns >
variance
 Initial uncertainty distribution is fixed
* We are allowed to pick the system f e — ¢ = 0
OR ?
« Form of initial uncertainty distribution is fixed f g2(x, W fr(x)dx —c; = 0 Georgia ﬁ‘
a . Tech Q

+ We are allowed to set its parameters : ‘
] CREATING THE NEXT



Probabilistic Inverse Problems

So far, we have tried to optimize vector of initial inputs given desired
expected values of observables

fo(x) t fr)
y

variance
« System (and control) is fixed

* What is the initial uncertainty distribution that meets f o (O — 6 — 0
desired expected values? J g1 Wit 1
» Engineering design problems, drug design/dosing,

. . . . . . f g2(c W fr(x)dx —c; =0 Georgia /\
disease modeling, biological population modeling... 5 i

Tech|)
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Probabilistic Inverse Problems

So far, we have tried to optimize vector of initial inputs given desired
expected values of observables

A x)
X f T(
f 0 ( ) mean obstacle
7 u :
Qrrrnnnnnnnnnns > 4
variance
Probabilistic inverse problem: Given expectations f 91 W fr(x)dx — ¢, = 0
of observables of the output, what is a valid input o
o o
) f 9200w fr(x)dx —c; = 0 Georgia ﬁ
) . Tech@‘
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Probabilistic Inverse Problems

Problem statement:

Find fO (x) S.t.: 1= / fo(X) dx Integrate to 1 constraint
supp(fo)
C;i = / foxX)U;gi(X) dx i=1,...,p EV equality constraints
supp(fo)
Cj < / fox)Ug;(x) dx j=p+1,....K EV inequality constraints
supp(fo)

U; is Koopman operator that pulls observable
function back from time ¢; to t,
Georgia ﬁ

Tech M
Meyers et al., J. Comp. Phys., 2021. CREATING THE NEXT



Probabilistic Inverse Problems

Problem statement:

Find fO (x) S.t.: 1= / fo(X) dx Integrate to 1 constraint
supp(fo)
C;i = / foxX)U;gi(X) dx i=1,...,p EV equality constraints
supp(fo)
Olptimiz.e over the .Space of Cj < / foX)U;g;j(x) dx j=p+1,....K EV inequality constraints
L* functions...this is hard.

supp(fo)

Georgia @
Tech
Meyers et al" 'J' Comp Phy81 2021 7 CREATING THE NEXZT



Probabilistic Inverse Problems

Problem statement:

Find fO (x) S.t.: 1= / fo(X) dx Integrate to 1 constraint
supp(fo)
C;i = f foxX)U;gi(X) dx i=1,...,p EV equality constraints
supp(fo)
Olptimiz.e over the .Space of Cj < / foX)U;g;j(x) dx j=p+1,....K EV inequality constraints
L* functions...this is hard.

supp(fo)

This is an ill-posed problem.
So we will need regularization.

Tech

Georgia &
Meyel’S et al-, J Comp PhyS., 2021 - CREATING THE NEXET



Probabilistic Inverse Problems

Formulation as a quadratic program:

Approximate f,(x) as
piecewise linear over grid

At

»

&~y wifo®i)gi(Si(xk))

k=0

Quadrature approximation of desired EVs

argmin||Gf — c||5 + A2||Lf]|3

feR" I \

EV targets (LS cost) Regularization
WTf =1 Integrate to 1 constraint
Geqf — ceq EV equality constraints

Gineqf > Cineg
f>0

EV inequality constraints

Georgia ﬁ
Tech|
Meyers et al') 'J Comp Phys’ 2021 H CREATING THE NEXT[‘



Probabilistic Inverse Problems

Formulation as a quadratic program:

) Non-negative constrained
least-squares problem

‘ Cast as a convex quadratic
program

- Use QP solver to find vector f
which approximates initial

distribution

argmin||Gf — c||5 + A2||Lf]|3

feR" I \

EV targets (LS cost) Regularization

WTf =1 Integrate to 1 constraint
Geqf = Ceq EV equality constraints
Gineqf = Cineq EV inequality constraints

f>0

Meyers et al., J. Comp. Phys., 2021.




Probabilistic Inverse Problems

Formulation as a quadratic program:

) Non-negative constrained
least-squares problem

‘ Cast as a convex quadratic
program

- Use QP solver to find vector f
which approximates initial

distribution

Made possible because we formulated
problem using Koopman expectations!

argmin||Gf — c||5 + A%||Lf||5

feR" I \

EV targets (LS cost) Regularization

WTf =1 Integrate to 1 constraint
Geqf = Ceq EV equality constraints

Gineqf > Cineg
f>0

EV inequality constraints

Meyers et al., J. Comp. Phys., 2021.



Inverse Problem Example: Reentry Vehicle

* Vinh's Equations

6 : : : 0.5 120
—C1/Cp =0.333
° —CL/CD=05 100
x=Vcosy, 4l - |
r=Vsiny, i)
sC 2 7
» _ —PILD ro \
V = VZ4go(—) siny, .
2m J %0 100 200 300 400 0 0 200 300 400 0 100 200 300 400
. ,OSCL V go /To 2 Time (s) Time (s) Time (s)
Yy = VAl ———(— COS Y 107 107
2m r V \r 10— 1 e S
1000 | 4l
—~15} ~
o 800 | o 4l
< 600} T 1t g
w \% % 9l
o | <os| £ N
200 | >
0 0 0
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
Time (s) Time (s) Time (s)

Tech
Meyers et al., J. Comp. Phys., 2021. o
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Inverse Problem Example: Reentry Vehicle

Expected Value

Pr(1000 < x(T) < 1150 km) > 0.99 Final position constraint
Pr(0.09 <V(T) < 0.11 km/s) > 0.99 Final velocity constraint
Case 1 Pr(Q(T) < 1.5x107 kcal/m) > 0.99 Final integrated heat load constraint
Pr(max Q(T) < 3x10° kcal/mz/s) > 0.99 Maximum heating rate constraint (allowable range)
Pr(1000 < x(T) < 1150 km) > 0.99
Case 2 Pr(0.09 <V(T) < 0.11 km/s) > 0.99
E[max Q(T)] (kcal/m?/s) =3x%x10° Maximum heating rate equality constraint

Uncertainty in lift coefficient (C,), drag coefficient (Cp), heating coefficient (Cy)

What are allowable distributions for them?

Tech

Georgia @
Meyers et al., J. Comp. Phys., 2021. .



Inverse Problem Example: Reentry Vehicle

PDF Value

Cr, Marginal

700 0.01

600
0.008
500
400  0-006
-

€
300 0.004
200

100

4000
3000
2000

1000

Cp Marginal

1.4

1200
1000
800
600
400
200

Cy Marginal

0.005

0.01

Case 1: Allowable range of heating rates

Case 2: Maximum heating rate enforced

Meyers et al., J. Comp. Phys., 2021.

Tech
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Inverse Problem Example: Reentry Vehicle

Cr, Marginal

Cp Marginal

PDF Value
S

0.01
0.008
0.006

)
0.004

0.002

0.8

8000
6000
4000

2000

0.4 0.5 0.6 0.7
Cr

0.4

0.5 0.6 0.7
Cr

1200

Cy Marginal

Case 1: Allowable range of heating rates

Case 2: Maximum heating rate enforced

0.005 0.01

« Multi-dimensional distributions computed using

125,000 points (Case 1) and 15,625 points (Case 2)

* Monte Carlo simulations verify that desired EV

constraints were met using computed distributions

Georgia “
Te%h Q
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Conclusion

Koopman operator provides powerful mechanism for optimization under parametric
uncertainty

Unigue computational advantages compared to MC and other explicit UQ methods

Approach has been demonstrated in optimization of discrete control decisions and initial
uncertainty distributions

Potential extensions to systems with process noise and cases involving optimization of
continuous-time controllers

/ P f(2)g(x)dm = / (@) Usg(z)dz
Q Q

»*.

3500 4000 4500 5000 5500 6000 6500
Easting [m]
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