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Optimal Decision-Making Under Uncertainty
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Okay…but how do we compute 𝑃!𝑓 𝑥 for nonlinear/non-Gaussian systems?



Forward Density Propagation for Uncertain Systems

!
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"!" !
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(measure 
preserving)

20 

 

The first example shown in this section illustrates performance of the two algorithms when the packages 
are released into the wind for both the deterministic and probabilistic cases.  Thus for demonstration purposes the 
probabilistic algorithm is forced to choose a heading into the wind (full functionality of heading selection will be 
shown in the next example).  Figure 11 shows an arbitrarily-chosen desired distribution used for all the examples in 
this section, along with the initial samples color-coded by probability value.  For all simulations shown in this 
section, values of N = 10,000 and Nz = 4 were chosen for the probabilistic mission planner. 

 
 

 

Figure 11.  Left:  Desired Impact Distribution.  Right:  Samples of Initial Joint Probability Density. 

 
 
 Following initial sampling, the stochastic Liouville equation is solved for each of Nh candidate headings.  
For these examples Nh = 12, which yields candidate headings at 30 deg increments.  Figure 12 shows a top-down 
view of the joint densities propagated to the airdrop altitude, where only two of the point clouds (representing the 
densities) are shown for clarity.   Purple squares represent the location of the maximum probability values for each 
propagated density, ZhiOe Whe Ued ³[´ iQdicaWeV Whe ORcaWiRQ Rf Whe VeOecWed SUobabilistic CARP.  The desired 
distribution at ground impact is shown below the right-hand point cloud using contour lines.  Note that the general 
shape of the distributions remains largely the same for each candidate heading, but a significant spatial offset is 
observed due to the aircraft throw occurring in different directions.  Furthermore note that the selected CARP is not 
necessarily the maximum probability location of the distribution.  Rather, the optimal flight path is selected as 
described above using the Radon transform, and the CARP is then computed along this path as the location of the 
weighted mean of the marginal distribution along this flight path (the marginal distribution for this example is 
shown in Figure 13).  In this initial example for demonstration and comparison purposes, the probabilistic algorithm 
is forced to choose a heading into the wind. 

7400 7600 7800 8000 8200 8400

4400

4600

4800

5000

5200

5400

Crossrange (m)
Do

w
nr

an
ge

 (
m

)

Prevailing Wind
Direction

7400 7600 7800 8000 8200 8400

4400

4600

4800

5000

5200

5400

Crossrange (m)

Do
w

nr
an

ge
 (

m
)

4220 4230 4240 4250 4260 4270
-15

-10

-5

0

5

10

15

20

25

Frobenius-Perron (FP) Operator Monte Carlo Simulation

Polynomial Chaos 𝑌 =,
#$%

&

𝑦#𝜓# Ξ = 𝜂 𝑥 𝑋' =,
#$%

&

𝑥#𝜓# Ξ



The Koopman Operator

S : Rn ! Rn

State Map

g : Rn ! R
Observable

Koopman Operator

KSg (x) = g
�
S (x)

�

• Properties of Koopman operator of a system reveals properties of the underlying system
• Recent advancement in the literature for approximating via data-driven methods

• Extended Dynamic Mode Decomposition (Williams et al. 2014, Korda and Mezic 2018)



Relationship with Uncertain Systems
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Benefits of the Koopman Expectation

vs.

Push-Forward (FP) Expectation
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Pull-Back (Koopman) Expectation

Meyers et al., ACC 2019.

• Improved numerical stability
• Simpler evaluation

• Domain of integration is initial domain Ω vs its image 𝑆 Ω
• Provides well-defined structure of data, leading to simpler solution approaches (e.g., quadrature 

integration) equilibrium of this dynamics, in the asymptotic limit, all probability
mass gets in that sink. Thus, the support of the stationary distribution
has Lebesgue measure zero.

2. 2-D Example

Next, consider a planar vector field

_x! x"# 2y

log$x2 ! y2% _y! y" 2x

log$x2 ! y2% (16)

with given initial conditions x$0% " x0 and y$0% " y0. Looking at the
form of the dynamics, we convert Eq. (16) from Cartesian to polar
coordinates using the standard transformation r _r" x _x! y _y and
_!" x _y#y _x

x2!y2 to obtain

_r"#r _!" 1

log r
(17)

purely as a matter of working convenience. The initial conditions for
Eq. (17) are r0 :" r$0% "

!!!!!!!!!!!!!!!!
x20 ! y20

p
and !0 :" !$0% " arctan y0x0.

From the polar equations, it immediately follows that as t!1,
r$t%! 0 and j!$t%j ! 1 implying that the origin is a globally
asymptotically stable spiral for this nonlinear system (Fig. 2). Notice,
however, that a linear stability analysis predicts the origin to be a
stable star. In fact, one can easily solveEq. (17) to get the trajectory in
closed form

r$r0; t% " r0e#t; !$!0; t% " !0 ! log

"
log r0

log r0 # t

#
(18)

which corroborates the asymptotic behavior mentioned above.
Further, one can compute
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#
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From Eq. (18), we also get

r0$r; t% " ret; !0$!; t% " ! # log

"
log r! t
log r

#
(20)

Thus, Eqs. (19) and (20) result

’$r; !; t% " ’0$r0; !0%et " ’0
"
ret; ! # log

"
log r! t
log r

##
et (21)

If the initial conditions are sampled from a uniform distribution,
the transient PDFs resemble the phase portrait of Fig. 2, converging
toward a dirac delta at the origin. To examine the case for non-
uniformly sampled initial conditions, an initial PDF is taken which
has a high probability around !" 0 and is symmetric about the same.
The polar plots of Fig. 3 shows the PDF contours at t" 0, 0.2, 0.5,
1.0, 1.4 and 2.0, respectively, for the dynamics given by Eq. (16). It
can be observed that the support of the transient PDFs shrink
progressively and spirally converge toward the origin. The center
(periphery) has high (low) probability.

Remark 1: The two simple examples given above illustrate how
MOC solves the SLE. InMOC, the initial value problem (IVP) given
by Eq. (8) is solved along the characteristics (which in case of SLE,
are the integral curves or trajectories of the flow). Thus the integral in
Eq. (9) is a path integral computed along each trajectoy (see Fig. 4).
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starting with a standard normal distribution.

Fig. 1 Evolution of theN !0; 1" initial PDF according to Eq. (15).
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Fig. 2 Vector field (left) and an ensemble of trajectories in the phase space (right) for the nonlinear system given by Eq. (16).
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• Improved numerical stability
• Simpler evaluation

• Domain of integration is initial domain Ω vs its image 𝑆 Ω
• Provides well-defined structure of data, leading to simpler solution approaches (e.g., quadrature 

integration)

• Computing expectation of multiple observables with varying supports in space-time
• Pull-back each to a common domain domain ➞ Single, vector-valued expectation calculation

Halder and 
Bhattacharya, 2011
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Benefits of the Koopman Expectation

vs.E
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• Faster convergence
• Error bounds / tolerancing via quadrature 

integration

• Downside: Koopman expectation assumes 
no process noise.

• Application limited to systems which have only 
parametric uncertainty

Monte Carlo Simulation

value. The expected value integral (for a given value of tstart )
then has the same form as in (21), except with k f = 4, and
likewise is solved analytically. Note that the volumes W over
which the integral is computed in (21) are different, due to
the contraction of the state space between t0 and T . Given
the fact that the expected value is computed analytically for
the FP and Koopman cases, they return identical results as
expected.

Figure 2 shows the analytical expected value computed
across the range of discretized tstart values, where it can be
seen that the probabilistically optimal input time is 2.9 or
6.8 sec. With this analytical result for the expected value
known, the three numerical techniques detailed in Section
III for estimating the expected value numerically (15)-(17)
are used to evaluate convergence properties. Figure 3 shows
relative error of the expected value with respect to the
analytical solution, averaged over all values of tstart , as a
function of the number of discretized points or samples N.
Note that because the system is linear and the state space
volume is rectangular, the final domain volume is known
exactly for the propagated joint PDF. This results in the same
convergence properties for the Koopman and FP operator
approaches. While this example shows the faster convergence
rates for FP and Koopman over Monte Carlo (although the
relative errors are quite small), the computational benefits of
using the Koopman operator over the FP operator approach
are not visible in this linear example. The next example
incorporating nonlinear dynamics will be used to clearly
illustrate these benefits.
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B. Spring Mass Damper - Parameter Uncertainty

This example considers the identical problem as in the pre-
vious section, except that uncertainty in the spring constant k
is added to the initial condition uncertainty. The augmented
state (composed of states and uncertainty parameters) is thus
(x1,x2,k). In this case, k is assumed to have a uniform
distribution on the interval [0.5,1.5] N/m, and Gaussian
distributions are assumed for uncertainty in initial position
and initial velocity (with µ = 0.25 and s = 0.0625 for both
states). The three distributions are assumed to be independent
of one another. The Gaussian distributions are truncated at
±4s to enforce a compact support over the entire augmented
state domain. This results in a three-dimensional initial state
space domain over the augmented state (x1,x2,k) that is
rectangular.

With the addition of uncertainty in k, the system becomes
nonlinear in the augmented state. This nonlinearity warps the
initial domain such that the state space volume at the final
time T = 10 sec is a highly complex shape (as shown in
Fig. 4). The complexity of this shape prohibits an analytical
solution to the expected value integral since the integration
bounds are complex shapes that are coupled between states.
The three numerical approaches in Section III are used
instead. First, the Monte Carlo simulation approximation in
(15) can be applied, yielding the expected value estimates
shown in Fig. 5 (for N = 1,000). Applying the Koopman
operator approach in (17) is quite straightforward, since
the initial volume V (t0) is rectangular and known exactly.
The analytical trajectory solution is used to obtain the cost
function associated with each discretized point in the initial
uncertainty space (again with N = 1,000), and the expected
value is computed according to (17) and shown in Fig. 5.
Finally, the FP approach using (16) is more difficult in this
example due to the difficulty of computing the volume V (T )
over the final warped domain. While there are methods to
approximate the domain volume in the three dimensional
case using either a convex hull [24] or alpha shape function
[25], these approximations may be inaccurate even with large
numbers of points and they do not easily extend beyond
three dimensions. Furthermore, when using the FP approach,
the final PDF values at T = 10 sec were in the range
[0,800] compared to the range [0,40] at the initial time,
demonstrating the growth of the PDF values as the state
space contracts. For example, by increasing the damping
coefficient to c = 1.4 Ns/m, the final PDF values at T = 10
sec were in the range [0,107]. Using alpha shape functions
to best approximate the final domain volume, the expected
value estimates using FP are shown in Fig. 5, where it is
evident that the distortion of the state space and growth of
the PDF values lead to reduced accuracy compared to the
Koopman and Monte Carlo approach. Note that significantly
more points are required using the FP operator approach to
converge to the results generated by the Koopman operator
or Monte Carlo simulation. Overall, these results highlight
the benefit of the Koopman operator approach in avoiding
problems with complex domain volumes and loss of numer-
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• In general, they are not the same
• However, there is an equivalence between the Koopman expectation and non-intrusive 

gPC when computing the mean value of an observable function 𝑔 𝒙

Generalized Polynomial 
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• In general, they are not the same
• However, there is an equivalence between the Koopman expectation and non-intrusive 

gPC when computing the mean value of an observable function 𝑔 𝒙
• Koopman advantage: When computing higher-order moments, Koopman method 

(redefining observable) requires a lot less integrals than gPC
• gPC advantage: You can sample from transformed distribution (Koopman expectation 

only provides expected values)

Generalized Polynomial 
Chaos (gPC)



• In practice, we do not compute Koopman operator 𝒦!

• Instead, we compute action of the Koopman operator on observable 
functions of interest at discrete points in state space 𝒦!𝑔 𝑥"

• Then integrals can be approximated via quadrature

Using the Koopman Expectation for Probabilistic 
Optimization

$
#

𝒦!𝑔 𝑥 𝑓$ 𝑥 𝑑𝑥 ≈'
"$%

&

𝒦!𝑔 𝑥" 𝑓$ 𝑥% 𝑤"

𝒦"𝑔 𝑥# : From each discrete sample 𝑥#, forward simulate and compute observable function

𝑓$ 𝑥# :     Initial uncertainty PDF evaluated at sample 𝑥#

𝑤#:          Quadrature weight

Note: We can also use other 
methods such as Monte Carlo 
integration to compute this as well.

Meyers et al., ACC 2019.



• We wish to solve the following optimization problem:

Probabilistic Optimization via the Koopman Expectation

𝒖∗ = arg min
𝒖∈𝒰

$
#

𝒦!𝑔 𝒙, 𝒖 𝑓$ 𝒙 𝑑𝒙

subject to:

$
#

𝒦!𝒄 𝒙, 𝒖 𝑓$ 𝒙 𝑑𝒙 < 𝒓

Minimize expected value of cost

Satisfy chance constraints

Meyers et al., ACC 2019.



• We wish to solve the following optimization problem:

Probabilistic Optimization via the Koopman Expectation

𝒖∗ = arg min
𝒖∈𝒰

$
#

𝒦!𝑔 𝒙, 𝒖 𝑓$ 𝒙 𝑑𝒙

subject to:

$
#

𝒦!𝒄 𝒙, 𝒖 𝑓$ 𝒙 𝑑𝒙 < 𝒓

Key point: Because cost and constraint 
functions pulled back to initial time via 
Koopman operator, 𝑓$ 𝒙 is never 
explicitly propagated forward in time.

Meyers et al., ACC 2019.



Example 1: Bouncing Ball

Bouncing ball in 2D with uncertain coefficient of restitution.
Compute expected cost value (no optimization).

multidimensional quadrature code with analytically defined adjoints for these operators. As such, the expec-
tation of a quantity of interest and its gradient can be optimally implemented from the following primitives:

• An automatic differentiation tool which allows for defining optimized adjoints for specific functions

• Optimized implementations of adjoint expressions for differential equations

• Optimized implementations of adjoint expressions for spatial integration methods, such as multidimen-
sional quadrature

• Easily parallelizable differential equation solver with support for accelerator hardware such as GPUs

This capability is available in the DiffEqUncertainty.jl¶ package for the Julia programming language.

8 Illustrative Example

To demonstrate the performance of the Koopman Expectation in terms of accuracy and computational
efficiency as compared to the standard Monte Carlo approach consider a 2D bouncing ball with an uncertain
coefficient of restitutionk

i.e.,

ẍ =


ẍ

z̈

�
=


0
�g

�
, x0 = 2m, ẋ0 = 2m/s, z0 = 50m, ż0 = 0m/s (29)

where x and z are the horizontal and vertical position of the ball, respectively, and g is the acceleration due
to gravity on the Earth’s surface.

For time instances where z = 0, the vertical velocity of the ball is modified according to

ż
+ = �↵ż

� (30)

where ż
+ and ż

� are the ball’s vertical velocity just prior and after impact, respectively, and ↵ is the normal
coefficient of restitution. Uncertainty in ↵ is modeled as a truncated normal distribution on the interval
[0.84, 1] with mean µ↵ = 0.9 and standard deviation �↵ = 0.02. We denote the PDF of this distribution by
f↵.

We wish to compute the expected squared miss distance from a target point on a vertical wall with coordinates
(x⇤

, z
⇤) = (25m, 25m). This scenario is illustrated in Figure 4 with the target point indicated by the green

star. The nominal trajectory (dashed line) and 350 random trajectories are also shown.

For this problem, S maps the initial condition to the vertical wall at x = x
⇤ as parameterized by ↵.

S is computed via numerical simulation using the Tsitouras 5/4 Runge-Kutta method [35] provided by
the DifferentialEquations.jl solver suite [30] with event detection for both wall and ground impact. The
simulation is terminated when the ball impacts the vertical wall.

As we are interested in the squared miss distance from the target point on the wall, we define the observable
g as

g (x) = (z � z
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multidimensional quadrature code with analytically defined adjoints for these operators. As such, the expec-
tation of a quantity of interest and its gradient can be optimally implemented from the following primitives:

• An automatic differentiation tool which allows for defining optimized adjoints for specific functions

• Optimized implementations of adjoint expressions for differential equations

• Optimized implementations of adjoint expressions for spatial integration methods, such as multidimen-
sional quadrature

• Easily parallelizable differential equation solver with support for accelerator hardware such as GPUs

This capability is available in the DiffEqUncertainty.jl¶ package for the Julia programming language.

8 Illustrative Example

To demonstrate the performance of the Koopman Expectation in terms of accuracy and computational
efficiency as compared to the standard Monte Carlo approach consider a 2D bouncing ball with an uncertain
coefficient of restitutionk

i.e.,
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�
, x0 = 2m, ẋ0 = 2m/s, z0 = 50m, ż0 = 0m/s (29)

where x and z are the horizontal and vertical position of the ball, respectively, and g is the acceleration due
to gravity on the Earth’s surface.

For time instances where z = 0, the vertical velocity of the ball is modified according to
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where ż
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� are the ball’s vertical velocity just prior and after impact, respectively, and ↵ is the normal
coefficient of restitution. Uncertainty in ↵ is modeled as a truncated normal distribution on the interval
[0.84, 1] with mean µ↵ = 0.9 and standard deviation �↵ = 0.02. We denote the PDF of this distribution by
f↵.

We wish to compute the expected squared miss distance from a target point on a vertical wall with coordinates
(x⇤

, z
⇤) = (25m, 25m). This scenario is illustrated in Figure 4 with the target point indicated by the green

star. The nominal trajectory (dashed line) and 350 random trajectories are also shown.

For this problem, S maps the initial condition to the vertical wall at x = x
⇤ as parameterized by ↵.

S is computed via numerical simulation using the Tsitouras 5/4 Runge-Kutta method [35] provided by
the DifferentialEquations.jl solver suite [30] with event detection for both wall and ground impact. The
simulation is terminated when the ball impacts the vertical wall.

As we are interested in the squared miss distance from the target point on the wall, we define the observable
g as
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⇤)2 (31)
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Figure 4: Bouncing Ball Scenario

The analytical solution to this expectation (Appendix A) will serve as the truth value. For this particular
example, we choose to use h-adaptive integration [9] to compute this integral in the Koopman Expectation.
By doing so, the integration scheme adaptively selects values for ↵ such that the relative and absolute error
tolerences for the expectation are satisfied via an error estimate. Here, we set both of these tolerances to
1e�2.

The efficiency of the Koopman Expectation is compared to the standard Monte Carlo simulation approach.
All Monte Carlo simulations were performed by randomly sampling from f↵ and evaluating S. Table 1 shows
the resulting expected value and computation time required from running 100 000 Monte Carlo simulations
along with those from leveraging the Koopman Expectation. The residual computed by the h-adaptive
integration is also reported for the Koopman Expectation. Each Monte Carlo simulation was run in parallel
on a 6 core processor, whereas the Koopman Expectation was computed serially on the same processor.
For this problem, the h-adaptive integration scheme used for the Koopman Expectation only required 15
simulations to reach the specified error tolerances, resulting in approximately a 1700x speed-up. Although
6666x fewer simulations are required, a 6666x speed-up is not realized due to two primary factors:

1. Overhead associated with the h-adaptive integration. This overhead is independent of the computa-
tional complexity of the system map S. So, for problems involving computationally expensive maps,
the relative impact of this overhead diminishes.

2. Parallel versus serial implementations. As noted above, the Monte Carlo simulations were conducted
in parallel on a 6 core processor, while the 15 simulations required for the Koopman Expectation
were conducted serially. There is no theoretical or technical limitation preventing the batch parallel
execution of these simulations. However, it does require a spatial integration library that supports
batch integrand evaluations. Because of the overhead associated with parallel execution and integration
and the limited number of simulations required to meet the integration tolerances of this problem, a
parallel implementation offers minimal benefit here. However, for more complex problems parallel
batch simulations can provide significant additional speed-ups, especially when coupled with massively
parallel compute architectures like GPUs.

Figure 5 shows the convergence of Monte Carlo with respect to the Koopman Expectation solution. After
100 000 simulations the Monte Carlo solution is still asymptoting to the analytical solution. The absolute
error after 100 000 Monte Carlo simulations is 0.226m2. Whereas the absolute error resulting from the
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[0.84, 1] with mean µ↵ = 0.9 and standard deviation �↵ = 0.02. We denote the PDF of this distribution by
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We wish to compute the expected squared miss distance from a target point on a vertical wall with coordinates
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For this problem, S maps the initial condition to the vertical wall at x = x
⇤ as parameterized by ↵.

S is computed via numerical simulation using the Tsitouras 5/4 Runge-Kutta method [35] provided by
the DifferentialEquations.jl solver suite [30] with event detection for both wall and ground impact. The
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As we are interested in the squared miss distance from the target point on the wall, we define the observable
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tolerences for the expectation are satisfied via an error estimate. Here, we set both of these tolerances to
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simulations to reach the specified error tolerances, resulting in approximately a 1700x speed-up. Although
6666x fewer simulations are required, a 6666x speed-up is not realized due to two primary factors:

1. Overhead associated with the h-adaptive integration. This overhead is independent of the computa-
tional complexity of the system map S. So, for problems involving computationally expensive maps,
the relative impact of this overhead diminishes.

2. Parallel versus serial implementations. As noted above, the Monte Carlo simulations were conducted
in parallel on a 6 core processor, while the 15 simulations required for the Koopman Expectation
were conducted serially. There is no theoretical or technical limitation preventing the batch parallel
execution of these simulations. However, it does require a spatial integration library that supports
batch integrand evaluations. Because of the overhead associated with parallel execution and integration
and the limited number of simulations required to meet the integration tolerances of this problem, a
parallel implementation offers minimal benefit here. However, for more complex problems parallel
batch simulations can provide significant additional speed-ups, especially when coupled with massively
parallel compute architectures like GPUs.
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Table 1: Bouncing Ball Monte Carlo Results

Analytical Monte Carlo Koopman

Number of Simulations - 100 000 15
Expected Value

⇥
m2

⇤
36.008 35.782 36.008± 4.987e�4

Computation Time [s] - 2.060 0.0012

Koopman Expectation is 2.68e−11 m2.

Figure 5: Monte Carlo Expectation Convergence

Next, we leverage this speed-up to optimize x0 2 [�100m, 0m] , ẋ0 2
⇥
1m/s, 3m/s

⇤
, z0 2 [10m, 50m] such

that E [g] is minimized. This is achieved using the Method of Moving Asymptotes (MMA) [34] gradient-based
local optimization algorithm with a relative tolerance stopping criteria on the optimization parameters of
1e−3. Gradients of the expected value are computed using forward mode automatic differentiation.

The resulting solution produces an expectation of 8.38e−2 m2 in 0.117 s with 26 evaluations of the objective
function and gradient in total. By leveraging the Koopman Expectation within the optimization loop, we
are able to complete this optimization 17.5x faster than the time required to compute the objective function
once using Monte Carlo. Figure 6 shows the nominal trajectory (dashed line) and 350 random trajectories
resulting from the optimized initial conditions.

Lastly, we are interested in computing some higher-order statistics of the observable g resulting from this
optimization. In particular, we compute central moments 2-5 using Eq. 12 by first defining a vector-valued
observable as

ḡ (x) =
h
g (x) , g (x)2 , ..., g (x)5

i>
(33)

and then formulate the Koopman Expectation by

E
h
ḡ
�
S (x,↵)

� ��� f
i
=

Z 1

0.84
ḡ
�
S (x,↵)

�
f (↵) d↵ (34)

By leveraging the Koopman Expectation, we are able to compute this vector-valued expectation and then
solve Eq. 12 for the 4 central moments in 3.396ms. This was achieved with only 225 simulations in total.
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Only 15 simulations 
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multidimensional quadrature code with analytically defined adjoints for these operators. As such, the expec-
tation of a quantity of interest and its gradient can be optimally implemented from the following primitives:

• An automatic differentiation tool which allows for defining optimized adjoints for specific functions

• Optimized implementations of adjoint expressions for differential equations

• Optimized implementations of adjoint expressions for spatial integration methods, such as multidimen-
sional quadrature

• Easily parallelizable differential equation solver with support for accelerator hardware such as GPUs

This capability is available in the DiffEqUncertainty.jl¶ package for the Julia programming language.

8 Illustrative Example

To demonstrate the performance of the Koopman Expectation in terms of accuracy and computational
efficiency as compared to the standard Monte Carlo approach consider a 2D bouncing ball with an uncertain
coefficient of restitutionk

i.e.,
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�
, x0 = 2m, ẋ0 = 2m/s, z0 = 50m, ż0 = 0m/s (29)

where x and z are the horizontal and vertical position of the ball, respectively, and g is the acceleration due
to gravity on the Earth’s surface.

For time instances where z = 0, the vertical velocity of the ball is modified according to

ż
+ = �↵ż

� (30)

where ż
+ and ż

� are the ball’s vertical velocity just prior and after impact, respectively, and ↵ is the normal
coefficient of restitution. Uncertainty in ↵ is modeled as a truncated normal distribution on the interval
[0.84, 1] with mean µ↵ = 0.9 and standard deviation �↵ = 0.02. We denote the PDF of this distribution by
f↵.

We wish to compute the expected squared miss distance from a target point on a vertical wall with coordinates
(x⇤

, z
⇤) = (25m, 25m). This scenario is illustrated in Figure 4 with the target point indicated by the green

star. The nominal trajectory (dashed line) and 350 random trajectories are also shown.

For this problem, S maps the initial condition to the vertical wall at x = x
⇤ as parameterized by ↵.

S is computed via numerical simulation using the Tsitouras 5/4 Runge-Kutta method [35] provided by
the DifferentialEquations.jl solver suite [30] with event detection for both wall and ground impact. The
simulation is terminated when the ball impacts the vertical wall.

As we are interested in the squared miss distance from the target point on the wall, we define the observable
g as

g (x) = (z � z
⇤)2 (31)

From the Koopman Expectation we have
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multidimensional quadrature code with analytically defined adjoints for these operators. As such, the expec-
tation of a quantity of interest and its gradient can be optimally implemented from the following primitives:

• An automatic differentiation tool which allows for defining optimized adjoints for specific functions

• Optimized implementations of adjoint expressions for differential equations

• Optimized implementations of adjoint expressions for spatial integration methods, such as multidimen-
sional quadrature

• Easily parallelizable differential equation solver with support for accelerator hardware such as GPUs

This capability is available in the DiffEqUncertainty.jl¶ package for the Julia programming language.

8 Illustrative Example

To demonstrate the performance of the Koopman Expectation in terms of accuracy and computational
efficiency as compared to the standard Monte Carlo approach consider a 2D bouncing ball with an uncertain
coefficient of restitutionk
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where x and z are the horizontal and vertical position of the ball, respectively, and g is the acceleration due
to gravity on the Earth’s surface.

For time instances where z = 0, the vertical velocity of the ball is modified according to

ż
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� (30)

where ż
+ and ż

� are the ball’s vertical velocity just prior and after impact, respectively, and ↵ is the normal
coefficient of restitution. Uncertainty in ↵ is modeled as a truncated normal distribution on the interval
[0.84, 1] with mean µ↵ = 0.9 and standard deviation �↵ = 0.02. We denote the PDF of this distribution by
f↵.

We wish to compute the expected squared miss distance from a target point on a vertical wall with coordinates
(x⇤

, z
⇤) = (25m, 25m). This scenario is illustrated in Figure 4 with the target point indicated by the green

star. The nominal trajectory (dashed line) and 350 random trajectories are also shown.

For this problem, S maps the initial condition to the vertical wall at x = x
⇤ as parameterized by ↵.

S is computed via numerical simulation using the Tsitouras 5/4 Runge-Kutta method [35] provided by
the DifferentialEquations.jl solver suite [30] with event detection for both wall and ground impact. The
simulation is terminated when the ball impacts the vertical wall.

As we are interested in the squared miss distance from the target point on the wall, we define the observable
g as

g (x) = (z � z
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From the Koopman Expectation we have
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• Optimized implementations of adjoint expressions for differential equations

• Optimized implementations of adjoint expressions for spatial integration methods, such as multidimen-
sional quadrature

• Easily parallelizable differential equation solver with support for accelerator hardware such as GPUs

This capability is available in the DiffEqUncertainty.jl¶ package for the Julia programming language.
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where x and z are the horizontal and vertical position of the ball, respectively, and g is the acceleration due
to gravity on the Earth’s surface.

For time instances where z = 0, the vertical velocity of the ball is modified according to
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where ż
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� are the ball’s vertical velocity just prior and after impact, respectively, and ↵ is the normal
coefficient of restitution. Uncertainty in ↵ is modeled as a truncated normal distribution on the interval
[0.84, 1] with mean µ↵ = 0.9 and standard deviation �↵ = 0.02. We denote the PDF of this distribution by
f↵.

We wish to compute the expected squared miss distance from a target point on a vertical wall with coordinates
(x⇤

, z
⇤) = (25m, 25m). This scenario is illustrated in Figure 4 with the target point indicated by the green

star. The nominal trajectory (dashed line) and 350 random trajectories are also shown.

For this problem, S maps the initial condition to the vertical wall at x = x
⇤ as parameterized by ↵.

S is computed via numerical simulation using the Tsitouras 5/4 Runge-Kutta method [35] provided by
the DifferentialEquations.jl solver suite [30] with event detection for both wall and ground impact. The
simulation is terminated when the ball impacts the vertical wall.

As we are interested in the squared miss distance from the target point on the wall, we define the observable
g as
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Initial Conditions to Optimize:

Table 1: Bouncing Ball Monte Carlo Results

Analytical Monte Carlo Koopman

Number of Simulations - 100 000 15
Expected Value

⇥
m2

⇤
36.008 35.782 36.008± 4.987e�4

Computation Time [s] - 2.060 0.0012

Koopman Expectation is 2.68e−11 m2.

Figure 5: Monte Carlo Expectation Convergence

Next, we leverage this speed-up to optimize x0 2 [�100m, 0m] , ẋ0 2
⇥
1m/s, 3m/s

⇤
, z0 2 [10m, 50m] such

that E [g] is minimized. This is achieved using the Method of Moving Asymptotes (MMA) [34] gradient-based
local optimization algorithm with a relative tolerance stopping criteria on the optimization parameters of
1e−3. Gradients of the expected value are computed using forward mode automatic differentiation.

The resulting solution produces an expectation of 8.38e−2 m2 in 0.117 s with 26 evaluations of the objective
function and gradient in total. By leveraging the Koopman Expectation within the optimization loop, we
are able to complete this optimization 17.5x faster than the time required to compute the objective function
once using Monte Carlo. Figure 6 shows the nominal trajectory (dashed line) and 350 random trajectories
resulting from the optimized initial conditions.

Lastly, we are interested in computing some higher-order statistics of the observable g resulting from this
optimization. In particular, we compute central moments 2-5 using Eq. 12 by first defining a vector-valued
observable as

ḡ (x) =
h
g (x) , g (x)2 , ..., g (x)5

i>
(33)

and then formulate the Koopman Expectation by
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By leveraging the Koopman Expectation, we are able to compute this vector-valued expectation and then
solve Eq. 12 for the 4 central moments in 3.396ms. This was achieved with only 225 simulations in total.
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1e−3. Gradients of the expected value are computed using forward mode automatic differentiation.
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are able to complete this optimization 17.5x faster than the time required to compute the objective function
once using Monte Carlo. Figure 6 shows the nominal trajectory (dashed line) and 350 random trajectories
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Figure 7 shows the convergence of Monte Carlo for these moments up to 10M simulations (blue) along with
the values computed via the Koopman Expectation (red). Here, 10M Monte Carlo simulations takes 264.5 s.
Table 2 shows the moments computed via the 10M Monte Carlo simulations and the Koopman Expectation.
Again, the residual errors computed by the integration method are included for the Koopman Expectation.
Compared to 10M Monte Carlo simulations, the Koopman Expectation provides a 77,000x speed-up while
realizing tight error bounds on the solution.

Table 2: Bouncing Ball Central Moments

Central Moment Monte Carlo Koopman

2 9.030e−2 9.007e�2± 3.878e�5
3 3.878e−1 3.924e�1± 1.776e�3
4 3.214 3.428± 1.536e�3
5 38.116 44.536± 3.733e�3

9 Conclusion

The need to propagate uncertainty through a dynamical system is prevalent across the scientific and engi-
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Example 1: Bouncing Ball

Bouncing ball in 2D with uncertain coefficient of restitution.

multidimensional quadrature code with analytically defined adjoints for these operators. As such, the expec-
tation of a quantity of interest and its gradient can be optimally implemented from the following primitives:

• An automatic differentiation tool which allows for defining optimized adjoints for specific functions

• Optimized implementations of adjoint expressions for differential equations

• Optimized implementations of adjoint expressions for spatial integration methods, such as multidimen-
sional quadrature

• Easily parallelizable differential equation solver with support for accelerator hardware such as GPUs

This capability is available in the DiffEqUncertainty.jl¶ package for the Julia programming language.

8 Illustrative Example

To demonstrate the performance of the Koopman Expectation in terms of accuracy and computational
efficiency as compared to the standard Monte Carlo approach consider a 2D bouncing ball with an uncertain
coefficient of restitutionk

i.e.,

ẍ =


ẍ

z̈

�
=


0
�g

�
, x0 = 2m, ẋ0 = 2m/s, z0 = 50m, ż0 = 0m/s (29)

where x and z are the horizontal and vertical position of the ball, respectively, and g is the acceleration due
to gravity on the Earth’s surface.

For time instances where z = 0, the vertical velocity of the ball is modified according to

ż
+ = �↵ż

� (30)

where ż
+ and ż

� are the ball’s vertical velocity just prior and after impact, respectively, and ↵ is the normal
coefficient of restitution. Uncertainty in ↵ is modeled as a truncated normal distribution on the interval
[0.84, 1] with mean µ↵ = 0.9 and standard deviation �↵ = 0.02. We denote the PDF of this distribution by
f↵.

We wish to compute the expected squared miss distance from a target point on a vertical wall with coordinates
(x⇤

, z
⇤) = (25m, 25m). This scenario is illustrated in Figure 4 with the target point indicated by the green

star. The nominal trajectory (dashed line) and 350 random trajectories are also shown.

For this problem, S maps the initial condition to the vertical wall at x = x
⇤ as parameterized by ↵.

S is computed via numerical simulation using the Tsitouras 5/4 Runge-Kutta method [35] provided by
the DifferentialEquations.jl solver suite [30] with event detection for both wall and ground impact. The
simulation is terminated when the ball impacts the vertical wall.

As we are interested in the squared miss distance from the target point on the wall, we define the observable
g as

g (x) = (z � z
⇤)2 (31)

From the Koopman Expectation we have

E
h
g
�
S (x,↵)

� ��� f↵
i
=

Z 1

0.84
g
�
S (x,↵)

�
f↵ (↵) d↵ (32)

¶https://github.com/SciML/DiffEqUncertainty.jl
kThe coefficient of restitution is the ratio of relative velocities just before and just after collision
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Initial Conditions to Optimize:

Table 1: Bouncing Ball Monte Carlo Results

Analytical Monte Carlo Koopman

Number of Simulations - 100 000 15
Expected Value

⇥
m2

⇤
36.008 35.782 36.008± 4.987e�4

Computation Time [s] - 2.060 0.0012

Koopman Expectation is 2.68e−11 m2.

Figure 5: Monte Carlo Expectation Convergence

Next, we leverage this speed-up to optimize x0 2 [�100m, 0m] , ẋ0 2
⇥
1m/s, 3m/s

⇤
, z0 2 [10m, 50m] such

that E [g] is minimized. This is achieved using the Method of Moving Asymptotes (MMA) [34] gradient-based
local optimization algorithm with a relative tolerance stopping criteria on the optimization parameters of
1e−3. Gradients of the expected value are computed using forward mode automatic differentiation.

The resulting solution produces an expectation of 8.38e−2 m2 in 0.117 s with 26 evaluations of the objective
function and gradient in total. By leveraging the Koopman Expectation within the optimization loop, we
are able to complete this optimization 17.5x faster than the time required to compute the objective function
once using Monte Carlo. Figure 6 shows the nominal trajectory (dashed line) and 350 random trajectories
resulting from the optimized initial conditions.

Lastly, we are interested in computing some higher-order statistics of the observable g resulting from this
optimization. In particular, we compute central moments 2-5 using Eq. 12 by first defining a vector-valued
observable as

ḡ (x) =
h
g (x) , g (x)2 , ..., g (x)5

i>
(33)

and then formulate the Koopman Expectation by

E
h
ḡ
�
S (x,↵)

� ��� f
i
=

Z 1

0.84
ḡ
�
S (x,↵)

�
f (↵) d↵ (34)

By leveraging the Koopman Expectation, we are able to compute this vector-valued expectation and then
solve Eq. 12 for the 4 central moments in 3.396ms. This was achieved with only 225 simulations in total.
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ḡ
�
S (x,↵)

�
f (↵) d↵ (34)

By leveraging the Koopman Expectation, we are able to compute this vector-valued expectation and then
solve Eq. 12 for the 4 central moments in 3.396ms. This was achieved with only 225 simulations in total.

12

Table 1: Bouncing Ball Monte Carlo Results

Analytical Monte Carlo Koopman

Number of Simulations - 100 000 15
Expected Value

⇥
m2

⇤
36.008 35.782 36.008± 4.987e�4

Computation Time [s] - 2.060 0.0012

Koopman Expectation is 2.68e−11 m2.

Figure 5: Monte Carlo Expectation Convergence

Next, we leverage this speed-up to optimize x0 2 [�100m, 0m] , ẋ0 2
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Optimal Solution produces expected cost of 
8.3×10() in 0.12 sec (Julia implementation)

Figure 6: Bouncing Ball, Minimized Expected Squared Miss Distance

Figure 7 shows the convergence of Monte Carlo for these moments up to 10M simulations (blue) along with
the values computed via the Koopman Expectation (red). Here, 10M Monte Carlo simulations takes 264.5 s.
Table 2 shows the moments computed via the 10M Monte Carlo simulations and the Koopman Expectation.
Again, the residual errors computed by the integration method are included for the Koopman Expectation.
Compared to 10M Monte Carlo simulations, the Koopman Expectation provides a 77,000x speed-up while
realizing tight error bounds on the solution.

Table 2: Bouncing Ball Central Moments

Central Moment Monte Carlo Koopman

2 9.030e−2 9.007e�2± 3.878e�5
3 3.878e−1 3.924e�1± 1.776e�3
4 3.214 3.428± 1.536e�3
5 38.116 44.536± 3.733e�3

9 Conclusion

The need to propagate uncertainty through a dynamical system is prevalent across the scientific and engi-
neering disciplines. Although many solution approaches exist in the literature that can exploit the structure
of the dynamics and/or uncertainties to solve such problems efficiently, few naturally generalize to the broad-
est class of problems involving non-linear hybrid systems with non-Gaussian uncertainties driven by process
noise. The de facto standard for such problems is Monte Carlo methods.

In this work we developed an efficient method for computing the expectation of random variables as prop-
agated through a dynamic system that generalizes to this broadest class of problems. This is achieved by
exploiting the action of the Koopman operator without needing an explicit representation of the operator it-
self. Although this approach only directly applies to analyzing uncertainty through expectations, the careful
selection of observables enables the calculation of higher-order statistics.
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High-Altitude Low-Opening (HALO) Airdrop

Example 2:  Airdrop Mission Planning

u! " argmax
u∈U

ED#USg$X%ju& (17)

where the optimized function is still explicitly dependent on u
through its appearance in f0 and/or S.
The choice of constructing the control optimization problem using

the Koopman operator vs the Frobenius–Perron operator, and vice
versa, is problem dependent. Eachmethod brings associated benefits,
costs, and restrictions. Considering a problem in which the system
dynamics S, or F, are not a function of the control selection u, the
Koopman operator approach provides a method to pull back the
objective function once and then compute the expected value for each
f0$xju% directly on the decision space. However, when using the
Koopman operator, the joint PDF supported on the objective space is
not needed nor explicitly computed. If this forward-propagated
density is of value when solving the control optimization problem,
the Frobenius–Perron operator approach may be used. Even so, care
must be taken when evaluating the forward-propagated joint PDF
numerically using Eq. (2). Given a strictly positive or strictly negative
Φ$x% ∀ x ∈ Ω, the joint PDF will approach 0 or ∞, respectively,
given enough time, causing floating-point precision errors.

C. Inequality Constraints

The optimization problems of Eqs. (12) and (17) may be easily
extended to include inequality constraints over the augmented state
space. Given the uncertainty that exists in the initial conditions, any
constraint is inherently probabilistic and expressed as an expected
value. Constructed in a fashion similar to the decision and objective
spaces, a constraint space is expressed as

C " fjq$t; x%j > 0: x ∈ Ω; t ∈ Rg (18)

where q is the constraint function. Considering the semidynamical
system fStgt≥0, the mapping Q:D → C, Q ∈ fStgt≥0 connects the
decision space to the constraint spacewhereQ is indexed from the set
via the parameter tq. If t0 indexes the decision space and tf indexes the
objective space, it is assumed that t0 ≤ tq ≤ tf. The generality of the
definition allows for the inclusion of constraints that are 1) supported
on the decision space, C ⊆ D with tq " t0; 2) supported on the
objective space, C ⊆ O with tq " tf; or 3) supported anywhere in
between, i.e., t0 < tq < tf.
Considering the mapping Q, the Frobenius–Perron operator may

be used to push forward the initial condition PDF to where it is
supported on the constraint space for use in an expected value
calculation. The constrained optimization problem in the Frobenius–
Perron form is written as

u! " argmax
u∈U

EO#g$X%ju&; X ∼ PSf0 (19a)

s:t. EC #q$X%ju& ≤ λ; X ∼ PQf0 (19b)

where λ is the constraint tolerance. Alternatively, and equivalently,
the Koopman operator may be used to pull back the constraint
function from the constraint space to the decision space. The
constrained optimization problem in the Koopman form is written as

u! " argmax
u∈U

ED#USg$X%ju&; X ∼ f0 (20a)

s:t ED#UQq$X%ju& ≤ λ; X ∼ f0 (20b)

where both expected value calculations are performed on the decision
space.Using this methodology, an arbitrary number of constraints
may be considered, where qi, Ci, and λi are the equation, space, and
tolerance of the ith constraint, respectively.

IV. Airdrop Problem Dynamics and Uncertainties
To compute a probabilistically optimal CARP and aircraft run-in

for ballistic airdrop using the method detailed in Sec. III, a
mathematical representation of the parachute-payload dynamical

systemmust be developed. Additionally, the sources of uncertainty in
the mission planning process must be identified. These sources are
separated into uncertainty during release and uncertainty during
descent as described in the following. The uncertainty during release
is conditioned on the available control decisions, the CARP location
and run-in heading.

A. Parachute-Payload Dynamic Model

The planning process developed in this paper addresses HALO
ballistic airdrop missions. However, the methodology can be easily
applied to more standard airdrop missions in which the main
parachute is deployed immediately after release from the aircraft. A
typical HALO airdrop descent can be divided into the three stages
depicted in Fig. 2. As the package exits the aircraft, the drogue
parachute inflates, and the initial momentum from aircraft release
dissipates, at which point the package is said to be stabilized. From
here, the system descends under the drogue parachute in a quasi-
steady state to the so-called transition altitude, where the drogue
parachute is released and the main parachute begins to inflate. After
themain parachute is fully inflated, it descends in a quasi-steady state
until impact with the terrain. In this paper, the transition altitude is
predetermined; however, previous work [3,4] has investigated
preflight or on-package optimization schemes.
For the purposes of this paper, a number of simplifying

assumptions are made. First, stabilization of the drogue-parachute
system is assumed to be deterministic and happens immediately after
exiting the aircraft. Second, the main parachute inflation follows a
simple parameterized model as described in [6]. Lastly, the drag of
the payload is neglected, and the drag of the system is composed
entirely by that of the parachute. It is important to note that these
assumptions pertain to themodel choice and are not a reflection of the
methodology itself. For example, in the case of the first assumption, a
random forward-throw descent stage may be included in the model
without any modification to the methodology.
Considering an inertial, nonrotating north–east–down coordinate

system shown in Fig. 2, the equations of motion for a point-mass
model representation of the parachute-payload system are given
by [6]

2

4
!x
!y
!z

3

5 " −ρCdSkVrelk − 8kaρπR2 _R

2$m'ma%

" _x −wx

_y −wy

_z −wz

#
' m

m'ma

"
0
0
g

#

(21)

where ρ is the air density, S is the parachute’s reference area,Cd is the
coefficient of drag,m is the mass of the system,ma is the mass of the
air contained in the parachute canopy (referred to as the apparent
mass), R is the instantaneous parachute radius, and g is gravity. Note
that the values of S and R depend on whether the drogue or main

Fig. 2 HALO airdrop stages.
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Uncertainty:  Winds, parachute drag, 
package release dynamics

Optimize:  Release point, aircraft 
heading, opening altitude

Leonard et al., J. Guidance, Control, and Dynamics, 2020.



High-Altitude Low-Opening (HALO) Airdrop

Example 2:  Airdrop Mission Planning

Uncertainty:  Winds, parachute drag, 
package release dynamics

Optimize:  Release point, aircraft 
heading, opening altitude

Leonard et al., J. Guidance, Control, and Dynamics, 2020.

MonteCarlo simulationswere performed for eachCARP (250,000
eight-bundle sticks, 2 million total simulations), in which the
uncertain descent parameters were sampled from the distributions in
Table 1 and the initial xy locations were sampled for each package
using the bundle exit PDF described in Sec. IV.B.2 and Table 2. To
compare the CARPs, empirical cumulative density functions (CDFs)
are created from the mean radial distance for each stick from both the
probabilistic and deterministicMonte Carlo results. The probabilistic
CARP and run-in solution results in roughly the same 50% circular
error probable as the deterministic solution, 155.4 vs 156.1 m,
respectively. These similar results show that the probabilistic planner,
applied to this baseline scenario, will perform similarly to current
deterministic planning methods.
For the probabilistic solution, the planningmethodology returns an

expected workload of 158.9 m. Compared with the mean of the
Monte Carlo results of 157.8 m, this represents a difference of 1.1 m
or a relative error of 0.69%.Considering the xy-CARP locationswere
discretized on a 2 m grid, this error is within expected tolerances and
provides confidence that, if the uncertainty distributions are correct,
the planner can accurately predict the expected performance of the
system.

B. Complex Terrain Case

To demonstrate the level of complexity that the proposed planning
methodology can handle, this example considers a scenario involving

nonflat terrain and a more complex objective function. Figure 6a
shows an elevation map of a notional valley of interest. The objective
function is constructed by first considering an IPI at (5000, 5000 m),
then using Dijsktra’s algorithm to compute the minimal travel cost
from the IPI to every point in the set fxi; yi; zi ! hv"xi; yi#gnx×nyi!0 ,
where x and y are griddedwith nx and ny unique values, respectively,
and hv is the valley function depicted in Fig. 6a. The travel costs
between each point are a composite function of distance and slope,
penalizing steep vertical travel heavily. The cost function is
constrained and normalized such that the IPI has a cost of zero and
high-elevation regions have a maximum cost of 100, shown
in Fig. 6b.
Using N ! 512;000 realizations, the cost function is pulled back

through the dynamics using a predetermined transition altitude of
400 m. Note that when evaluating the cost function the three-
dimensional locations of the samples on the terrain are considered
(i.e., the trajectory simulations account for impact on nonflat terrain).
To demonstrate the capability of the probabilistic planner to adapt to
varying levels of uncertainty, the cost function is pulled back to two
different candidate drop altitudes, 3000 and 10,000 ft.
Figure 7a shows the ECVmap of the optimal run-in (−6 deg) for a

drop altitude of 3000 ft as well as the deterministic and probabilistic
CARP solutions. It is evident once again that the deterministic and
probabilistic solutions do not vary drastically. Although uncertainty
is present in the drop procedure and during descent, given the
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a) Elevation data. IPI at (5000 m, 5000 m) b) Cost function, minimum score at IPI
Fig. 6 Complex, nonflat terrain scenario and associated workload function.
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a) ECV map for 3000 ft drop altitude b) ECV map for 10,000 ft drop altitude
Fig. 7 Expected workload maps of optimal headings for 3000 ft and 10,000 ft drop altitudes.
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Cost Function 𝑔 𝑥, 𝑦
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Figure 6.  Example Complex Terrain (left) and Two Example Desired Points of Impact (right). 

    
Figure 7.  Example Dijkstra-Generated Cost Functions for High-Altitude (left) and Low-Altitude (right) 

Desired Points of Impact.  Color is Non-Dimensional Cost Units. 
 

V.  Simulation Results 

 Simulation results are presented to demonstrate the proposed methodologies for terrain compensation, 
reachability analysis, and cost function generation.  Several examples in this section provide performance 
comparisons between systems with a fixed transition altitude and those employing the proposed transition altitude 
optimization scheme.  Simulation results are presented for both road network and mountainous terrain examples. 
 
A.  Dropzone Containing a Road Network 
 

Suppose a desired point of impact is located on a road network as shown in Figure 8.  The inverse cost map 
calculated using the methodology described in Section IV.A is shown in Figure 9.  Note that the inverse cost is 
maximum at the desired PI (located at x = 440 m, y = 400 m), decreases along the road network with geodesic 
distance from the desired PI, and decreases significantly off the road network. 
 The simulation results in this subsection use a 3D spatially-varying wind field generated from the Weather 
Research and Forecasting (WRF) tool [16].  This wind field varies not only with respect to altitude but also with 
respect to x and y.  The wind data used here was generated for the Salinas Valley in Northern California and has a 
resolution of 333m in both the x and y directions and variable grid spacing in the altitude direction.  Plots of wind 
magnitudes are omitted here for space reasons, but are available in prior work by the authors in Reference [4].  For 
the drop locations selected in this example, horizontal winds of over 15 m/s are experienced above zt,max during 

Desired 
impact 
location

gD!ωi!t0"" # gO!ωi!Ti"" (40)

where gO is the user-defined objective function.
The use of the Koopman operator is a natural choice over the

Frobenius–Perron operator for the evaluation of the expected value of
the objective function for a number of reasons. If the Frobenius–
Perron form of the expected value is used, Eq. (37a), then the joint
PDF would need to be propagated forward for each possible control
decision. This is because the density evolved through the state space
is a function of the control variables. As a result, the density
propagation step along each realization in (39) will need to be
performed repeatedly, each time a new control selection is evaluated
in the search for an optimal decision. Alternatively, since Eq. (40)
does not explicitly contain the control decision u, the pullback of the
score function must only be performed once. Evaluating alternative
control values (CARP locations and headings) then only involves
recomputing the expected value integral in Eq. (37b)with the specific
joint density under consideration. Compared with the Frobenius–
Perron form of the expected value, which requires both a density
propagation step and computation of the expected value integral for
each candidate control decision, use of the Koopman operator
involves only recomputation of the integral and thus saves significant
computational effort.
A second benefit of the Koopman operator is that the joint PDF is

never explicitly propagated. During descent, the parachute system
approaches steady-state values in the velocity dimensions, causing
the volume of the support of the original joint PDF to decay to zero.
As such, the PDF values increase drastically to preserve the unit
volume constraint of the PDF. Thismay result in joint PDFvalues that
are too large to work with numerically. Hoogendoorn et al. [21]
experienced a similar problem. This is an issue that will affect any
system exhibitingΦ!x!t"" < 0, which includes stable systems, given
sufficient propagation time. Use of theKoopman operator form of the
expected value, Eq. (37b), avoids this issue with growth in the PDF
values since the joint PDF is never propagated [i.e., Eq. (39) is never
used in the solution procedure].
Using the Koopman operator form of the optimization problem,

the expected value of Eq. (37b) for the airdrop planning problem is

ED$G!X"ju% #
Z

Ω
G!x"fxy!x; yju"fCd

!Cd"fŵm
!ŵm"fx̂ψ !ŵψ " dx

(41)

where the k has been dropped from f!k"xy for notational simplicity and
G # USg is the pulled-back objective function. Since the CARP and
run-in decision u only appears in the initial xy uncertainty fxy, which
is known in closed form, it is beneficial to partition the full integral
and create a second function dependent only on x and y,

g&!x" # G!x; y; Cd; ŵm; ŵΨ"fCd
!Cd"fŵm

!ŵm"fx̂Ψ!ŵΨ" (42)

ED$G!X"ju% #
Z

Ax

Z

Ay

fxy!x; yju"

×
!Z

ACd

Z

Aŵm

Z

AŵΨ

g&!x; y; Cd; ŵm; ŵΨ" dCd dŵm dŵΨ

"
dx dy

(43)

#
Z

Ax

Z

Ay

fxy!x; yju"g&xy!x; y" dx dy (44)

where g&xy is the expectation of the objective function under perfect
knowledge of the drop location. This is typically referred to as a
conditional expectation.

While the decision to form the realization set at ground level
ensures sufficient coverage of the objective function, after solving the
BVPs, the realizations at the drop altitude (i.e., the origins of each
trajectory in the decision space) show no consistent structure and can
be considered scattered. It is only at these N locations that the
function g& is known, and therefore the integrals of g& in Eq. (43)
must be calculated numerically.
The numerical integration is performed using a kernel-based

approximation method [40,41]. The central theme of the method is
that an unknown function may be approximated by

g&!x" ≈
XN

i#1

ciK!x; xi" (45)

whereK is a kernel function,N is the number of known data sites, and
xi are the data sites. The coefficients ci are computed by solving the
linear system of equations Kc # g&, where K is an N × N
symmetric matrix constructed with the kernel evaluations of each
data-site pair and g& is the N × 1 vector of known function values.
For the purposes of this paper, Lobachevsky splines [42–44] are

used as the underlying kernel function. Unlike well-known radial
basis functions (a set of commonly applied kernel functions [41]) the
multivariate Lobachevsky spline possesses the unique characteristic
that it is constructed from the product of univariate functions, i.e.,

KL!x; xi" #
Yd

k#1

ϕ!xk − xi;k" (46)

where ϕ is the univariate Lobachevsky spline function. As such,
single dimensions may be easily integrated. The integration
procedure along various dimensions of the multivariate function
simply yields a modified set of coefficients, denoted !ci. The specifics
of this integration process are omitted for brevity and discussed in
detail by Leonard [25]. When computing the conditional expectation
in Eq. (44), the three drag and wind uncertainty dimensions are
integrated out, leaving the two-dimensional function g&xy,

g&xy!x; y" ≈
XN

i#1

!ciϕ!x − xi"ϕ!y − yi" (47)

This procedure constitutes the analytical integration of the
approximated g& function across the chosen dimensions.
Returning to the full expected value of Eq. (43), the density of the

uncertainty in x and y is given by the bundle exit PDF, Eq. (30).
Substituting Eq. (47) into Eq. (43), a functional representation of the
expected objective function value given the CARP and run-in tuple u
can be written as

E!u" #
Z

Ax

Z

Ay

fxy!x; yju"
XN

i#1

!ciϕ!x − xi"ϕ!y − yi" dx dy (48)

In this paper, the final two integrals of Eq. (48) are evaluated using
Monte Carlo integration. Since fxy is a two-dimensional Gaussian
distribution, a total of Ne evaluation points are sampled uniformly
within a five standard deviation ellipse centered on the mean of fxy.
The complete integral is thus approximated as

E!u" ≈ A5σ

Ne

XNe

j#1

#
fxy!xj; yjju"

XN

i#1

!ciϕ!xj − xi"ϕ!yj − yi"
$

(49)

whereA5σ is the area of the 5σ-ellipse, which is itself a function of the
CARP and run-in tuple u. The reason for this dependency is that,
when assuming a constant airspeed, dropping the packages on a
heading into the wind results in a lower aircraft groundspeed. Thus,
the spatial uncertainty in the drop location (and thus the support of
fxy) caused by rollout delays from the aircraft and other factors is less,
compared to when the aircraft drops the packages with a tailwind.
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Choose drop location 𝑥, 𝑦 that 
minimizes this expected value



High-Altitude Low-Opening (HALO) Airdrop

Example 2:  Airdrop Mission Planning

Leonard et al., J. Guidance, Control, and Dynamics, 2020.

MonteCarlo simulationswere performed for eachCARP (250,000
eight-bundle sticks, 2 million total simulations), in which the
uncertain descent parameters were sampled from the distributions in
Table 1 and the initial xy locations were sampled for each package
using the bundle exit PDF described in Sec. IV.B.2 and Table 2. To
compare the CARPs, empirical cumulative density functions (CDFs)
are created from the mean radial distance for each stick from both the
probabilistic and deterministicMonte Carlo results. The probabilistic
CARP and run-in solution results in roughly the same 50% circular
error probable as the deterministic solution, 155.4 vs 156.1 m,
respectively. These similar results show that the probabilistic planner,
applied to this baseline scenario, will perform similarly to current
deterministic planning methods.
For the probabilistic solution, the planningmethodology returns an

expected workload of 158.9 m. Compared with the mean of the
Monte Carlo results of 157.8 m, this represents a difference of 1.1 m
or a relative error of 0.69%.Considering the xy-CARP locationswere
discretized on a 2 m grid, this error is within expected tolerances and
provides confidence that, if the uncertainty distributions are correct,
the planner can accurately predict the expected performance of the
system.

B. Complex Terrain Case

To demonstrate the level of complexity that the proposed planning
methodology can handle, this example considers a scenario involving

nonflat terrain and a more complex objective function. Figure 6a
shows an elevation map of a notional valley of interest. The objective
function is constructed by first considering an IPI at (5000, 5000 m),
then using Dijsktra’s algorithm to compute the minimal travel cost
from the IPI to every point in the set fxi; yi; zi ! hv"xi; yi#gnx×nyi!0 ,
where x and y are griddedwith nx and ny unique values, respectively,
and hv is the valley function depicted in Fig. 6a. The travel costs
between each point are a composite function of distance and slope,
penalizing steep vertical travel heavily. The cost function is
constrained and normalized such that the IPI has a cost of zero and
high-elevation regions have a maximum cost of 100, shown
in Fig. 6b.
Using N ! 512;000 realizations, the cost function is pulled back

through the dynamics using a predetermined transition altitude of
400 m. Note that when evaluating the cost function the three-
dimensional locations of the samples on the terrain are considered
(i.e., the trajectory simulations account for impact on nonflat terrain).
To demonstrate the capability of the probabilistic planner to adapt to
varying levels of uncertainty, the cost function is pulled back to two
different candidate drop altitudes, 3000 and 10,000 ft.
Figure 7a shows the ECVmap of the optimal run-in (−6 deg) for a

drop altitude of 3000 ft as well as the deterministic and probabilistic
CARP solutions. It is evident once again that the deterministic and
probabilistic solutions do not vary drastically. Although uncertainty
is present in the drop procedure and during descent, given the
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a) Elevation data. IPI at (5000 m, 5000 m) b) Cost function, minimum score at IPI
Fig. 6 Complex, nonflat terrain scenario and associated workload function.
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Fig. 7 Expected workload maps of optimal headings for 3000 ft and 10,000 ft drop altitudes.
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relatively low drop altitude, the system is not exposed to uncertain
winds for a significant period of time. As a result, the expected
workload value is quite low, and the induced dispersion is small
enough that the planner targets the IPI in the narrow valley. Using the
probabilistic solution, the user should expect to recover an average
ECVof 14.67 for an eight-bundle stick.
While low drop altitudes reduce sensitivity to uncertainty during

descent, they may also pose more operational risk to the aircraft, and
thus higher drop altitudes are generally preferred. When dropping at
higher altitudes, however, greater dispersion is induced. Figure 7b
shows the ECV map for the optimal run-in for the 10,000 ft drop
altitude case. This figure shows that, given the increased dispersion,
targeting the high-valued narrow valley is no longer the optimal
solution. According to the user-supplied cost function, the possibility
of landing near the desired IPI no longer outweighs the risk of landing
on the mountaintops, which incurs a large penalty. The probabilistic
planning methodology automatically adapts the optimal CARP and
run-in solution to target the higher-cost but wider northern region to
minimize the expected workload under the increased uncertainty
without any user interaction. This stands in contrast to the
deterministic planner, which continues to target the IPI since it has no
mechanism to condition the CARP and run-in solution on the
underlying uncertainty distributions. This ability to adapt to varying
levels of uncertainty is one of the key strengths of the probabilistic
planner over deterministic methods.
To compare the probabilistic and deterministic solutions for a

10,000 ft drop altitude,MonteCarlo simulationswere performed. For
both CARP and run-in solutions, 250,000 eight-bundle sticks were
simulated from the drop altitude to ground with their terrain-impact
locations and workload function values recorded. Figure 8a shows
the terrain impacts of the two solutions, with the deterministic
solution still targeting the valley and the probabilistic solution
targeting the northern region. The average cost function value for
every stick is computed and used to create the empirical CDF shown
in Fig. 8b.
Important statistics from Fig. 8b are listed in Table 4 and show the

tradeoffs between the two solutions. First, considering minimum

values, the probabilistic solution’s lowest impact value is 24.4, while
20% of the deterministic solution’s impacts obtained a lower
workload function value than that. More generally, the top (lowest)
tenth percentile of the deterministic solution’s impacts is a full ten
units less than that of the probabilistic solution. However, when
considering the bottom (greatest) tenth percentile, the probabilistic
solution outperforms the deterministic solution by over 27 units. This
near elimination of the higher-valued tails pushes the probabilistic
solution’s mean lower than that of the deterministic solution. In other
words, the probabilistic scheme naturally trades the ability to
minimize its score in a low number drops for increased robustness of
the overall mission.
The Monte Carlo simulations also provide a method to check the

accuracy of the mission planner, given this complex scenario. The
planner computed an expected objective function value of 73.75 for
the optimal CARP and run-in, while the Monte Carlo objective
function results show an average value of 71.58, producing a relative
error of 3.0%. When comparing the cost function values, 26.25 from
the planner and 28.42 from Monte Carlo, the relative error is
increased to 7.6% through the reversion process.

C. Constrained Exclude Region Case

A final example explores the planning methodology’s ability to
handle probabilistic constraints. In this scenario, the packages should
land so as to minimize the travel distance from an IPI while avoiding
an obstacle or exclude region near the IPI. The allowable probability
that any bundle in the stick landswithin the obstaclewill be given by a
tolerance between 0 and 1.
Figure 9 shows the mission scenario. An IPI is located at (5000,

5000 m), and the distance traveled (workload) to retrieve the bundles
is to be minimized. Additionally, the exclude region is a 60 × 100 m
area near the IPI that cannot be traversed, and as such, the probability
that a package lands in the area is included as a constraint. The
optimal CARP and run-in decision is formulated using an inequality
constraint as defined in Eq. (53). The inequality constraint function is
to describe the probability that any bundle in the stick lands in the
exclude region. As such, De Morgan’s law [Eq. (54)] is used to
compute the stick’s composite value.
The cost function g, shown in Fig. 10a, is constructed by

computing the geodesic travel distance from the IPI, given that the
exclude region cannot be traversed. It is then inverted using a
maximum allowable cost of 500 m. The constraint function c, shown
in Fig. 10b, represents the probability of being within the exclude
region at ground level and is therefore 1 inside the region and 0
outside the region. The user’s tolerance to a bundle landingwithin the
exclude region is quantified by λe.
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a) Monte carlo impact locations b) CDF for probabilistic and deterministic solutions
Fig. 8 Terrain impact locations and resulting empirical CDFs for 10,000 ft drop altitude.

Table 4 Deterministic and probabilistic MC
impact statistics

Solution 10th percentile Mean 90th percentile
Deterministic 16.73 36.99 57.32
Probabilistic 26.96 28.42 29.95
Change !10.23 −8.57 −27.37
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• Deterministic planner does not account for uncertainty, 
drops straight into canyon (lots of bad outcomes)

• Probabilistic planner drops in flatter region – gives up best-
case performance to protect against lots of poor outcomes



Use library of (uncertain) maneuvers to 
construct path that minimizes expected 
cost while satisfying chance constraints

Example 3: Maneuver-Based Trajectory Planning

min
%∈'

𝐸[𝐽 𝐻% 𝑥(, 𝑡( )

s.t. 𝑃 𝐻% 𝑥(, 𝑡( ∉ 𝐹 ≤ 𝑟

𝐻% gives the state history 
under the controller 𝜇

Library:

Single Maneuver Under 
Parameter Uncertainty:

! " #$

Each realization has probability of 
occurring given joint distribution on 
parameters or ICs 

Koopman operator used to pull-back 
expected cost and constraint values 
for each maneuver

Gutow and Rogers, IEEE RAL, 2020.



“Expected State Planner”

Example 3: Maneuver-Based Trajectory Planning

Gutow and Rogers, IEEE RAL, 2020.

A* or dynamic programming can 
be used to solve for optimal path.

• Chain together next primitive from 
expected state of last one

• Use Koopman operator to pull back 
expected costs and constraint violations 
of candidate paths

• Use of primitives + Koopman allows UQ 
without real-time simulation



Yields planner with tunable risk thresholds

Example 3: Maneuver-Based Trajectory Planning

Gutow and Rogers, IEEE RAL, 2020.

• Vehicle has 40% chance of being destroyed 
every 0.25 sec inside region 1

• Vehicle has 2.5% chance of being destroyed 
every 0.025 sec inside region 2

• Trajectory adapts based on risk tolerance

1

2



So far, we have tried to optimize vector of initial inputs given desired 
expected values of observables 

Probabilistic Inverse Problems

Su(x)

𝑓( 𝑥 𝑓9 𝑥

𝑢∗?
mean

variance

obstacle

!
!

𝑔" 𝑥, 𝑢 𝑓# 𝒙 𝑑𝒙 − 𝑐" = 0

!
!

𝑔$ 𝑥, 𝑢 𝑓# 𝒙 𝑑𝒙 − 𝑐$ = 0

⋮

• Initial uncertainty distribution is fixed
• We are allowed to pick the system

• Form of initial uncertainty distribution is fixed
• We are allowed to set its parameters

OR



So far, we have tried to optimize vector of initial inputs given desired 
expected values of observables 

Probabilistic Inverse Problems

Su(x)

𝑓+ 𝑥 𝑓9 𝑥

?
mean

variance

obstacle

!
!

𝑔" 𝑥, 𝑢 𝑓# 𝒙 𝑑𝒙 − 𝑐" = 0

!
!

𝑔$ 𝑥, 𝑢 𝑓# 𝒙 𝑑𝒙 − 𝑐$ = 0

⋮
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equation [42] (leading to the notion of the “stochastic Koopman operator” recently studied by Crnjaric-Zic et al.) [43]. How-
ever, the current work focuses on deterministic systems only and thus treatment of stochastic dynamics is not necessary for 
the purposes of this work.

The generalized aggregate data inverse problem can now be defined alternatively using the Koopman operator rather 
than the FP operator.

Definition 2.3 (Generalized aggregate data inverse problem, Koopman operator form). Let {S1, S2, ..., S K } be deterministic trans-
formations on x ∈ RN , and let {U1, U2, ..., U K } be the associated Koopman operators. Furthermore, define a set of 
scalar functions G = {g1, g2, ..., gK } ∈ L∞ and a set of scalars {c1, c2, ..., cK } ∈ R. Solve for a probability density function 
f0 ∈ L1, f0 ≥ 0 that satisfies the following:

1 =
∫

supp( f0)

f0(x) dx

ci =
∫

supp( f0)

f0(x)Ui gi(x) dx i = 1, . . . , p (8)

c j <

∫

supp( f0)

f0(x)U j g j(x) dx j = p + 1, . . . , K

The inverse problems formulated in Definitions 2.2 and 2.3 are theoretically equivalent. However, for low-dimensional 
problems in which the integrals are approximated via quadrature methods, the Koopman formulation of the problem in 
Definition 2.3 offers unique computational advantages that enable a more straightforward solution process. First, the in-
tegrals in Eq. (8) are all calculated over the support of the distribution f0, which eliminates the need to determine the 
support of the transformed PDFs as required by Eq. (4). Second, use of Eq. (8) avoids any issues with numerical overflow 
of the transformed PDF values due to the collapsing PDF volume, because only f0 is present in the integrand. Third, when 
approximating the expected value integrals using quadrature techniques as in [19,36], the node locations used when dis-
cretizing f0 can be created so as to enable fairly easy integration (for instance, a rectangular grid can be used as in [44]). 
In contrast, if using Eq. (4), any discretization of the state in the original space will in general lead to scattered data in the 
transformed spaces, requiring integration of scattered data which is known to be computationally difficult [45]. Finally, in 
cases where only a subset of the initial states are uncertain, the FP operator form of the expected values in Eq. (4) will 
require integration across all dimensions of the state space, since in general uncertainty in a subset of states will lead to 
uncertainty in additional states at future times (depending on the dynamics). In contrast, the expected values computed 
using the Koopman operator formulation in Eq. (8) only require integration in the dimensions that are initially uncertain. 
These advantages in the context of quadrature-based solutions of the aggregate data inverse problem mirror those discussed 
in References [31] and [33].

Recall that the initial distribution, f0(x), is defined over the full augmented state space (consisting of the system states 
and uncertain parameters). However, in some problems only some components of the augmented state may be subject to 
uncertainty, while others are known exactly. Let xu be the uncertain augmented state components and xc be the known 
components which take on initial values xc,0. Then x = [xT

u , xT
c ] with the probability distribution over the known states 

given by fc,0(xc) = δ(xc − xc,0). Since the distribution over the augmented state is the product of the initial distribution of 
uncertain states, fu,0(xu), and the initial distribution of known states fc,0(xc), Eq. (7) can be simplified so that integration 
is performed only over the uncertain states according to,

E[g(xu,xc)| f i] =
∫

supp( f0)

fu,0(xu)Ui g(xu,xc)δ(xc − xc,0) dxu dxc

=
∫

supp( f0)

fu,0(xu)Ui g(xu,xc,0) dxu (9)

By reducing the dimension of the integral originally defined in Eq. (7), only the uncertain dimensions of the state space need 
to be considered in the integral equations for the expected values. Throughout the remainder of the paper, the expected 
value integrals will be defined over the uncertain dimensions only and the known model parameter distribution is assumed 
to take the form of a delta function.

2.2. Optimization problem formulation

The inverse problem in Definition 2.3 can be cast as an optimization problem by defining a least squares cost as follows. 
Let the function f̂0(x) :RN −→R, f̂0(x) ∈ L1, f̂0(x) > 0. The following integral equations can then be defined:
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equation [42] (leading to the notion of the “stochastic Koopman operator” recently studied by Crnjaric-Zic et al.) [43]. How-
ever, the current work focuses on deterministic systems only and thus treatment of stochastic dynamics is not necessary for 
the purposes of this work.

The generalized aggregate data inverse problem can now be defined alternatively using the Koopman operator rather 
than the FP operator.

Definition 2.3 (Generalized aggregate data inverse problem, Koopman operator form). Let {S1, S2, ..., S K } be deterministic trans-
formations on x ∈ RN , and let {U1, U2, ..., U K } be the associated Koopman operators. Furthermore, define a set of 
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The inverse problems formulated in Definitions 2.2 and 2.3 are theoretically equivalent. However, for low-dimensional 
problems in which the integrals are approximated via quadrature methods, the Koopman formulation of the problem in 
Definition 2.3 offers unique computational advantages that enable a more straightforward solution process. First, the in-
tegrals in Eq. (8) are all calculated over the support of the distribution f0, which eliminates the need to determine the 
support of the transformed PDFs as required by Eq. (4). Second, use of Eq. (8) avoids any issues with numerical overflow 
of the transformed PDF values due to the collapsing PDF volume, because only f0 is present in the integrand. Third, when 
approximating the expected value integrals using quadrature techniques as in [19,36], the node locations used when dis-
cretizing f0 can be created so as to enable fairly easy integration (for instance, a rectangular grid can be used as in [44]). 
In contrast, if using Eq. (4), any discretization of the state in the original space will in general lead to scattered data in the 
transformed spaces, requiring integration of scattered data which is known to be computationally difficult [45]. Finally, in 
cases where only a subset of the initial states are uncertain, the FP operator form of the expected values in Eq. (4) will 
require integration across all dimensions of the state space, since in general uncertainty in a subset of states will lead to 
uncertainty in additional states at future times (depending on the dynamics). In contrast, the expected values computed 
using the Koopman operator formulation in Eq. (8) only require integration in the dimensions that are initially uncertain. 
These advantages in the context of quadrature-based solutions of the aggregate data inverse problem mirror those discussed 
in References [31] and [33].

Recall that the initial distribution, f0(x), is defined over the full augmented state space (consisting of the system states 
and uncertain parameters). However, in some problems only some components of the augmented state may be subject to 
uncertainty, while others are known exactly. Let xu be the uncertain augmented state components and xc be the known 
components which take on initial values xc,0. Then x = [xT

u , xT
c ] with the probability distribution over the known states 

given by fc,0(xc) = δ(xc − xc,0). Since the distribution over the augmented state is the product of the initial distribution of 
uncertain states, fu,0(xu), and the initial distribution of known states fc,0(xc), Eq. (7) can be simplified so that integration 
is performed only over the uncertain states according to,

E[g(xu,xc)| f i] =
∫

supp( f0)

fu,0(xu)Ui g(xu,xc)δ(xc − xc,0) dxu dxc

=
∫

supp( f0)

fu,0(xu)Ui g(xu,xc,0) dxu (9)

By reducing the dimension of the integral originally defined in Eq. (7), only the uncertain dimensions of the state space need 
to be considered in the integral equations for the expected values. Throughout the remainder of the paper, the expected 
value integrals will be defined over the uncertain dimensions only and the known model parameter distribution is assumed 
to take the form of a delta function.

2.2. Optimization problem formulation

The inverse problem in Definition 2.3 can be cast as an optimization problem by defining a least squares cost as follows. 
Let the function f̂0(x) :RN −→R, f̂0(x) ∈ L1, f̂0(x) > 0. The following integral equations can then be defined:
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equation [42] (leading to the notion of the “stochastic Koopman operator” recently studied by Crnjaric-Zic et al.) [43]. How-
ever, the current work focuses on deterministic systems only and thus treatment of stochastic dynamics is not necessary for 
the purposes of this work.

The generalized aggregate data inverse problem can now be defined alternatively using the Koopman operator rather 
than the FP operator.

Definition 2.3 (Generalized aggregate data inverse problem, Koopman operator form). Let {S1, S2, ..., S K } be deterministic trans-
formations on x ∈ RN , and let {U1, U2, ..., U K } be the associated Koopman operators. Furthermore, define a set of 
scalar functions G = {g1, g2, ..., gK } ∈ L∞ and a set of scalars {c1, c2, ..., cK } ∈ R. Solve for a probability density function 
f0 ∈ L1, f0 ≥ 0 that satisfies the following:

1 =
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f0(x)Ui gi(x) dx i = 1, . . . , p (8)

c j <

∫

supp( f0)

f0(x)U j g j(x) dx j = p + 1, . . . , K

The inverse problems formulated in Definitions 2.2 and 2.3 are theoretically equivalent. However, for low-dimensional 
problems in which the integrals are approximated via quadrature methods, the Koopman formulation of the problem in 
Definition 2.3 offers unique computational advantages that enable a more straightforward solution process. First, the in-
tegrals in Eq. (8) are all calculated over the support of the distribution f0, which eliminates the need to determine the 
support of the transformed PDFs as required by Eq. (4). Second, use of Eq. (8) avoids any issues with numerical overflow 
of the transformed PDF values due to the collapsing PDF volume, because only f0 is present in the integrand. Third, when 
approximating the expected value integrals using quadrature techniques as in [19,36], the node locations used when dis-
cretizing f0 can be created so as to enable fairly easy integration (for instance, a rectangular grid can be used as in [44]). 
In contrast, if using Eq. (4), any discretization of the state in the original space will in general lead to scattered data in the 
transformed spaces, requiring integration of scattered data which is known to be computationally difficult [45]. Finally, in 
cases where only a subset of the initial states are uncertain, the FP operator form of the expected values in Eq. (4) will 
require integration across all dimensions of the state space, since in general uncertainty in a subset of states will lead to 
uncertainty in additional states at future times (depending on the dynamics). In contrast, the expected values computed 
using the Koopman operator formulation in Eq. (8) only require integration in the dimensions that are initially uncertain. 
These advantages in the context of quadrature-based solutions of the aggregate data inverse problem mirror those discussed 
in References [31] and [33].

Recall that the initial distribution, f0(x), is defined over the full augmented state space (consisting of the system states 
and uncertain parameters). However, in some problems only some components of the augmented state may be subject to 
uncertainty, while others are known exactly. Let xu be the uncertain augmented state components and xc be the known 
components which take on initial values xc,0. Then x = [xT

u , xT
c ] with the probability distribution over the known states 

given by fc,0(xc) = δ(xc − xc,0). Since the distribution over the augmented state is the product of the initial distribution of 
uncertain states, fu,0(xu), and the initial distribution of known states fc,0(xc), Eq. (7) can be simplified so that integration 
is performed only over the uncertain states according to,

E[g(xu,xc)| f i] =
∫

supp( f0)

fu,0(xu)Ui g(xu,xc)δ(xc − xc,0) dxu dxc

=
∫

supp( f0)

fu,0(xu)Ui g(xu,xc,0) dxu (9)

By reducing the dimension of the integral originally defined in Eq. (7), only the uncertain dimensions of the state space need 
to be considered in the integral equations for the expected values. Throughout the remainder of the paper, the expected 
value integrals will be defined over the uncertain dimensions only and the known model parameter distribution is assumed 
to take the form of a delta function.

2.2. Optimization problem formulation

The inverse problem in Definition 2.3 can be cast as an optimization problem by defining a least squares cost as follows. 
Let the function f̂0(x) :RN −→R, f̂0(x) ∈ L1, f̂0(x) > 0. The following integral equations can then be defined:
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problems of convergence to local minima in the space of the PDF parameters, and there is furthermore no guarantee in 
general that the family of densities represented by a particular parameterization will yield a feasible or sufficiently accurate 
solution to the problem. In this work, the initial distribution f̂0(x) is instead approximated at a set of quadrature points, 
yielding an approximate solution for f̂0(x) over a discretized domain. The augmented state space is discretized into n points 
given by {x0, x1, ..., xn}, where the set of discretized points fills the support of f̂0(x). Given this discretization, the expected 
value integrals in (10) and (13)-(15) can be approximated using weighted quadrature methods such as Gaussian quadrature 
or Simpson’s rule [48]. In this work, f̂0(x) is approximated as a piecewise linear function over a uniform rectangular grid 
of points in the augmented state space, in a similar manner to that proposed in [49] [16]. The expected values are then 
approximated using trapezoidal integration where the quadrature weights are defined by the vector, w = [w0, w1, . . . , wn]T . 
As will be discussed subsequently, the quadrature-based approach employed here is advantageous because it offers the re-
quired structure to solve the optimization problem as a quadratic program. While this provides benefit by allowing for the 
use of highly efficient numerical solvers, the downside of this approach is that it is limited to low-dimensional problems 
(less than about N = 7) due to the curse of dimensionality. Computational approaches using MC-based integration tech-
niques and alternative optimization methods that may be applied to problems of higher dimensions are of interest but are 
not explored here.

Recalling the definition of the Koopman operator as Ui g(x) = g (Si(x)), the expected value integrals in Eq. (10) can be 
approximated as

ĉi ≈
n∑

k=0

wk f̂0(xk)gi(Si(xk)), (17)

where wk is the kth weight for the trapezoidal integration scheme [48]. Letting the left hand side of Eq. (10) be denoted in 
vector form as ĉ = [ĉ1, ̂c2, . . . , ̂cp]T , the right hand side may be approximated as





w0 g1(S1(x0)) w1 g1(S1(x1)) . . . wn g1(S1(xn))
w0 g2(S2(x0)) w1 g2(S2(x1)) . . . wn g2(S2(xn))

...
...

. . .
...

w0 gr(Sr(x0)) w1 gr(Sr(x1)) . . . wn gr(Sr(xn))









f̂0(x0)

f̂0(x1)
...

f̂0(xn)




= Gf (18)

Analogous approximations can be made for the expected value integrals in Eqs. (14) and (15), yielding ceq = Geqf and 
cineq ≤ Gineqf, respectively, where ceq = [cr+1, cr+2, . . . , cp]T and cineq = [cp+1, cp+2, . . . , cK ]T .

With this approximation, the optimization problem in Eqs. (12)-(16) can be written in matrix form as:

argmin
f∈Rn

||Gf − c||22 (19)

subject to

wT f = 1 (20)

Geqf = ceq (21)

Gineqf ≥ cineq (22)

f ≥ 0 (23)

Equations (19)-(23) form a non-negative least squares problem with equality and inequality constraints. In general, the 
number of expected value targets (r) will be much less than the number of discretization points (n), meaning that the 
matrix G in Eq. (18) has more columns than rows. This leads to ill-conditioning that can be mitigated through the use 
of regularization techniques. In this work, Tikhonov regularization [39] is used due to its ease of implementation and 
smoothing properties. Tikhonov regularization augments the cost function with an additional term so that the optimization 
problem becomes,

argmin
f∈Rn

||Gf − c||22 + λ2||Lf||22 (24)

subject to

wT f = 1 (25)

Geqf = ceq (26)

Gineqf ≥ cineq (27)

f ≥ 0 (28)
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value integrals in (10) and (13)-(15) can be approximated using weighted quadrature methods such as Gaussian quadrature 
or Simpson’s rule [48]. In this work, f̂0(x) is approximated as a piecewise linear function over a uniform rectangular grid 
of points in the augmented state space, in a similar manner to that proposed in [49] [16]. The expected values are then 
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problems of convergence to local minima in the space of the PDF parameters, and there is furthermore no guarantee in 
general that the family of densities represented by a particular parameterization will yield a feasible or sufficiently accurate 
solution to the problem. In this work, the initial distribution f̂0(x) is instead approximated at a set of quadrature points, 
yielding an approximate solution for f̂0(x) over a discretized domain. The augmented state space is discretized into n points 
given by {x0, x1, ..., xn}, where the set of discretized points fills the support of f̂0(x). Given this discretization, the expected 
value integrals in (10) and (13)-(15) can be approximated using weighted quadrature methods such as Gaussian quadrature 
or Simpson’s rule [48]. In this work, f̂0(x) is approximated as a piecewise linear function over a uniform rectangular grid 
of points in the augmented state space, in a similar manner to that proposed in [49] [16]. The expected values are then 
approximated using trapezoidal integration where the quadrature weights are defined by the vector, w = [w0, w1, . . . , wn]T . 
As will be discussed subsequently, the quadrature-based approach employed here is advantageous because it offers the re-
quired structure to solve the optimization problem as a quadratic program. While this provides benefit by allowing for the 
use of highly efficient numerical solvers, the downside of this approach is that it is limited to low-dimensional problems 
(less than about N = 7) due to the curse of dimensionality. Computational approaches using MC-based integration tech-
niques and alternative optimization methods that may be applied to problems of higher dimensions are of interest but are 
not explored here.

Recalling the definition of the Koopman operator as Ui g(x) = g (Si(x)), the expected value integrals in Eq. (10) can be 
approximated as

ĉi ≈
n∑

k=0

wk f̂0(xk)gi(Si(xk)), (17)

where wk is the kth weight for the trapezoidal integration scheme [48]. Letting the left hand side of Eq. (10) be denoted in 
vector form as ĉ = [ĉ1, ̂c2, . . . , ̂cp]T , the right hand side may be approximated as





w0 g1(S1(x0)) w1 g1(S1(x1)) . . . wn g1(S1(xn))
w0 g2(S2(x0)) w1 g2(S2(x1)) . . . wn g2(S2(xn))

...
...

. . .
...

w0 gr(Sr(x0)) w1 gr(Sr(x1)) . . . wn gr(Sr(xn))









f̂0(x0)

f̂0(x1)
...

f̂0(xn)




= Gf (18)

Analogous approximations can be made for the expected value integrals in Eqs. (14) and (15), yielding ceq = Geqf and 
cineq ≤ Gineqf, respectively, where ceq = [cr+1, cr+2, . . . , cp]T and cineq = [cp+1, cp+2, . . . , cK ]T .

With this approximation, the optimization problem in Eqs. (12)-(16) can be written in matrix form as:

argmin
f∈Rn

||Gf − c||22 (19)

subject to

wT f = 1 (20)

Geqf = ceq (21)

Gineqf ≥ cineq (22)

f ≥ 0 (23)

Equations (19)-(23) form a non-negative least squares problem with equality and inequality constraints. In general, the 
number of expected value targets (r) will be much less than the number of discretization points (n), meaning that the 
matrix G in Eq. (18) has more columns than rows. This leads to ill-conditioning that can be mitigated through the use 
of regularization techniques. In this work, Tikhonov regularization [39] is used due to its ease of implementation and 
smoothing properties. Tikhonov regularization augments the cost function with an additional term so that the optimization 
problem becomes,

argmin
f∈Rn

||Gf − c||22 + λ2||Lf||22 (24)

subject to

wT f = 1 (25)

Geqf = ceq (26)

Gineqf ≥ cineq (27)

f ≥ 0 (28)
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vector form as ĉ = [ĉ1, ̂c2, . . . , ̂cp]T , the right hand side may be approximated as





w0 g1(S1(x0)) w1 g1(S1(x1)) . . . wn g1(S1(xn))
w0 g2(S2(x0)) w1 g2(S2(x1)) . . . wn g2(S2(xn))

...
...

. . .
...

w0 gr(Sr(x0)) w1 gr(Sr(x1)) . . . wn gr(Sr(xn))









f̂0(x0)

f̂0(x1)
...

f̂0(xn)




= Gf (18)

Analogous approximations can be made for the expected value integrals in Eqs. (14) and (15), yielding ceq = Geqf and 
cineq ≤ Gineqf, respectively, where ceq = [cr+1, cr+2, . . . , cp]T and cineq = [cp+1, cp+2, . . . , cK ]T .

With this approximation, the optimization problem in Eqs. (12)-(16) can be written in matrix form as:

argmin
f∈Rn

||Gf − c||22 (19)

subject to

wT f = 1 (20)

Geqf = ceq (21)

Gineqf ≥ cineq (22)

f ≥ 0 (23)

Equations (19)-(23) form a non-negative least squares problem with equality and inequality constraints. In general, the 
number of expected value targets (r) will be much less than the number of discretization points (n), meaning that the 
matrix G in Eq. (18) has more columns than rows. This leads to ill-conditioning that can be mitigated through the use 
of regularization techniques. In this work, Tikhonov regularization [39] is used due to its ease of implementation and 
smoothing properties. Tikhonov regularization augments the cost function with an additional term so that the optimization 
problem becomes,

argmin
f∈Rn

||Gf − c||22 + λ2||Lf||22 (24)

subject to

wT f = 1 (25)

Geqf = ceq (26)

Gineqf ≥ cineq (27)

f ≥ 0 (28)

7

EV targets (LS cost) Regularization

Non-negative constrained 
least-squares problem

Cast as a convex quadratic 
program

Use QP solver to find vector f
which approximates initial 
distribution

Made possible because we formulated 
problem using Koopman expectations!



• Vinh’s Equations

Inverse Problem Example: Reentry Vehicle

J. Meyers, J. Rogers and A. Gerlach Journal of Computational Physics 428 (2021) 110082

Fig. 11. Entry Vehicle Trajectories for Different Lift-to-Drag Ratios.

The planar equations of motion for an entry vehicle around a spherical planet are defined using the so-called Vinh’s 
model as [63]:

ẋ = V cosγ ,

ṙ = V sinγ ,

V̇ = −ρSC D

2m
V 2 + g0

( r0

r

)2
sinγ ,

γ̇ = ρSCL

2m
V +

(
V
r

− g0

V

( r0

r

)2
)

cosγ , (53)

where x is the downrange distance, r is the radial distance from the center of the planet, V is the magnitude of the velocity 
of the vehicle, γ is the flight path angle, CL is the lift coefficient, and C D is the drag coefficient. Additionally, in this 
example S = 12.017 m2, m = 5498.22 kg, g0 = 9.81 m/s2, and r0 = 6378.14 km. These equations are augmented by adding 
an additional state variable Q representing the integrated heat load per unit area. The dynamics of Q are given by [63],

Q̇ = 0.25C f ρ(r)V 3, (54)

where C f is the skin friction heating coefficient. An exponential model of the atmospheric density is assumed according to:

ρ(r) = ρ0e−β(r−r0), (55)

where ρ0 = 1.225 kg/m2 and β = 0.14 km-1 (modeled on Earth’s atmosphere).
The above model is parameterized by three key coefficients: the lift coefficient (CL ), drag coefficient (C D ), and skin 

friction heating coefficient (C f ). In this section it is assumed that all three parameters are constant throughout the duration 
of flight (note this differs from the typical assumption documented in [63], wherein these coefficients change as a function 
of angle of attack and Mach number). Furthermore, throughout this section the following initial conditions are used: x(0) = 0
km, r(0) = 6498.27 km, V (0) = 5 km/s, γ (0) = −3◦ , and Q (0) = 0.

The spatial trajectory of the entry vehicle is heavily influenced by the lift and drag coefficients, but not by the heating 
coefficient. However, the velocity profile heavily affects the heating rate and total integrated heat load of the vehicle, per 
Eq. (54). Two example trajectories for different lift-to-drag ratios and a constant skin-friction coefficient are shown in Fig. 11. 
In this figure, altitude above ground is defined as h = r − r0. The trajectories end at a fixed altitude hd , at which the 
parachutes deploy to slow the descent to the ground. Note that each trajectory will therefore exhibit a different final time 
T , which is dependent on the lift-to-drag ratio. However, the equations of motion can be easily modified such that the state 
derivatives become zero when the vehicle reaches the desired altitude, hd . Thus, setting T sufficiently large ensures that all 
trajectories have reached the final altitude for a given set of lift-to-drag ratios under consideration.

The generalized aggregate data inverse problem for this example is formulated such that, given expected value tar-
gets and probabilistic constraints on x(T ), V (T ), Q (T ), and max Q̇ (t), a valid probability distribution over the parameters 
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Case Expected Value Constraint

Case 1

𝑃𝑟 1000 ≤ 𝑥 𝑇 ≤ 1150 km ≥ 0.99

𝑃𝑟 0.09 ≤ 𝑉 𝑇 ≤ 0.11 km/s ≥ 0.99

𝑃𝑟 𝑄 𝑇 < 1.5×10- kcal/m ≥ 0.99

𝑃𝑟 max �̇� 𝑇 < 3×10. kcal/m//s ≥ 0.99

Case 2

𝑃𝑟 1000 ≤ 𝑥 𝑇 ≤ 1150 km ≥ 0.99

𝑃𝑟 0.09 ≤ 𝑉 𝑇 ≤ 0.11 km/s ≥ 0.99

𝐸 max �̇� 𝑇 (kcal/m//s) = 3×10.
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Final integrated heat load constraint
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Maximum heating rate equality constraint

Uncertainty in lift coefficient (CL), drag coefficient (CD), heating coefficient (Cf) 

What are allowable distributions for them?
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Table 1
Expected Value Targets and Constraints for Entry Vehicle Examples.

Case Expected Value Desired MC

1 Pr(1000 ≤ x(T ) ≤ 1150 km) ≥ 0.99 0.9934
Pr(0.09 ≤ V (T ) ≤ 0.11 km/s) ≥ 0.99 0.9973
Pr(Q (T ) < 1.5 × 107 kcal/m) ≥ 0.99 0.9976
Pr(max Q̇ (t) < 3 × 105 kcal

m2 s ) ≥ 0.99 0.9959

2 Pr(1000 ≤ X ≤ 1150 km) ≥ 0.99 0.9981
Pr(0.09 ≤ X ≤ 0.11 km/s) ≥ 0.99 0.9902
E[max Q̇ (t)] ( kcal

m2 s ) 3 × 105 3.05 × 105

Fig. 12. 1D Marginals of Joint Parameter Distribution (Case 1: blue, Case 2: red).

f0(C D , CL, C f ) must be found. The expected value targets and constraints are formulated as follows. First, a probabilistic 
constraint is enforced such that x(T ) ∈ [1000, 1150] km with probability greater than or equal to 99%. Second, to ensure 
proper inflation of the parachutes, the final velocity V (T ) must be in the range [0.09, 0.11] km/s with probability greater 
than or equal to 99%. Third, due to structural constraints, the integrated heat load and maximum heating rate must remain 
below 1.5 × 107 kcal/m2 and 3 × 105 kcal/m2/sec, respectively, with probability greater than or equal to 99%. (Note that, 
to enforce the constraint on maximum heating rate, an additional state variable can be included that records the maxi-
mum heating rate for a trajectory, analogous to the obstacle avoidance example above.) These probabilistic constraints are 
summarized in Table 1, Case 1.

This problem was solved using the methodology described in Section 3. The three-dimensional uncertainty space was 
discretized using 50 equally-spaced points per dimension (125,000 total points), and a Tikhonov parameter of λ = 0.001 was 
selected. Furthermore, the initial domain for discretization was found using the level set method described in the previous 
section. Because the joint state distribution is a function of three variables, only 1D and 2D marginal distributions can be 
visualized easily. These distributions are shown in blue in Fig. 12 and in the top row of Fig. 13. These marginals suggest 
that there is a limited range of acceptable CL and C D values that yield vehicle performance satisfying the requirements, 
with preferred values of approximately CL ≈ 0.6 and C D ≈ 1.2. The PDFs for these variables are clearly correlated in Fig. 13
as a result of the dependence of the vehicle trajectory on the lift-to-drag ratio, rather than the lift or drag coefficients 
individually. The distribution falls almost symmetrically along the line indicating a lift-to-drag ratio of 0.51. Furthermore, 
the C f marginal shows a fairly flat marginal distribution below approximately C f = 0.005. This is because the constraints 
imposed do not bias the solution toward low integrated heat values – any integrated heat load within the specified bounds 
is deemed sufficient. Thus there is a large allowable uncertainty in the skin friction coefficient that satisfies the probabilistic 
heating constraints. Predictably, Fig. 13 shows that CL and C D are fairly uncorrelated with respect to C f , although some 
correlation is visible due to the dependence of heating on velocity.

To ensure the generated parameter distribution satisfies the desired performance constraints, a Monte Carlo simulation 
of 50,000 trajectories was performed. Coefficients for each simulation were sampled from the parameter distribution found 
above. The final states were recorded, and relevant statistics were calculated for comparison with the desired expected 
value constraints. The results of the Monte Carlo study are shown in the right-hand column (marked “MC”) of Table 1. 
These statistics show excellent agreement with the desired probabilistic constraints, again verifying the efficacy of the 
computational approach.

A final example explores the case of two probabilistic constraints as well as an expected value target. In the first example 
(Case 1), there is no specification of a desired heating rate value, and only an allowable range is imposed. Instead, consider 
the case where a target expected maximum heat rate is specified according to E[max Q̇ (t)] = 3 × 105 kcal/m2/sec, and the 
probabilistic constraints on heat load and maximum heating rate are dropped. A summary of the probabilistic constraints 
and expected value target for this example is shown in Table 1 as Case 2. This problem was solved using a discretized mesh 
of 25 points per dimension (15,625 total points) and a Tikhonov parameter of λ = 0.001.
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Fig. 13. 2D Marginals of Joint Parameter Distribution (Case 1: top row, Case 2: bottom row).

The resulting solution is shown in Fig. 12 (in red) and Fig. 13 (bottom row). The marginal distributions for CL and C D
look similar to Case 1; however, the C f marginal is noticeably different. Due to the specification of a fairly low expected 
maximum heating rate, the probability mass for the skin friction heating coefficient is clustered closer to zero. This indicates 
that the mean value for this coefficient must be low, with fairly small uncertainty, in order to achieve the desired expected 
value. A Monte Carlo simulation with 50,000 trajectories was performed for this example using the resulting parameter 
distribution, with results shown in Table 1. Once again, the outcomes from the Monte Carlo simulation match extremely 
well with the desired specifications. Note that the relative error between the desired expected value of the maximum 
heating rate and that achieved in Monte Carlo is only 1.84%.

It is interesting to compare the computational effort required to solve Cases 1 and 2. In Case 2, the cost function has 
components from both an expected value target (on maximum heating rate) and Tikhonov regularization. The matrix Ḡ T Ḡ
in Eq. (31) is dense, meaning that the quadratic program solver must use dense matrix storage and perform dense matrix-
vector calculations when computing the cost function. However, when specifying only probabilistic constraints as in Case 
1, the cost is driven only by the Tikhonov regularization. The Tikhonov regularization matrix is sparse, which significantly 
reduces memory storage requirements and allows the quadratic program solver to use sparse matrix multiplication to speed 
up computation. The sparsity of the score matrix in Case 1 allows for a finer mesh over the discretized domain to be 
used (125,000 points) without exceeding memory limitations, compared to Case 2 (which used 15,625 points). As can be 
seen in Fig. 13, this finer discretization results in a better-resolved initial distribution for Case 1 compared to Case 2. Note 
that, for Case 2, a discretization finer than 25 points per dimension resulted in solver memory requirements greater than 
13 GB, which was the beyond the memory capacity of the computer on which these computations were performed. In 
some practical problems, it may be desired that the problem be formulated such that performance targets are specified as 
probabilistic constraints only, rather than expected value targets, in order to realize the memory efficiency gained from a 
sparse cost function matrix (although there may be tradeoffs between memory requirements and computation time which 
are not explored here).

Overall, the three examples in this section illustrate successful application of the proposed solution approach to several 
generalized aggregate data inverse problems. These case studies exemplify the advantages of using the Koopman operator 
to cast the problem as a series of integral equations and integral inequalities, all over the same integration domain. Results 
show that the solution methodology is a promising technique that can be applied to low-dimensional problems across a 
range of scientific and engineering applications.

5. Conclusion

A generalized aggregate data inverse problem has been defined in which a set of expected value targets and constraints 
are specified, and an initial state or parameter probability density must be found. By using the Koopman operator to pull-
back the relevant cost and constraint functions that are applied over the evolved probability distribution, the problem can be 
cast in the form of a set of integral equations and integral inequalities over a single integration domain. A solution approach 
for low-dimensional problems has been proposed that approximates the initial distribution at a set of discrete points, 
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Table 1
Expected Value Targets and Constraints for Entry Vehicle Examples.

Case Expected Value Desired MC

1 Pr(1000 ≤ x(T ) ≤ 1150 km) ≥ 0.99 0.9934
Pr(0.09 ≤ V (T ) ≤ 0.11 km/s) ≥ 0.99 0.9973
Pr(Q (T ) < 1.5 × 107 kcal/m) ≥ 0.99 0.9976
Pr(max Q̇ (t) < 3 × 105 kcal

m2 s ) ≥ 0.99 0.9959

2 Pr(1000 ≤ X ≤ 1150 km) ≥ 0.99 0.9981
Pr(0.09 ≤ X ≤ 0.11 km/s) ≥ 0.99 0.9902
E[max Q̇ (t)] ( kcal

m2 s ) 3 × 105 3.05 × 105

Fig. 12. 1D Marginals of Joint Parameter Distribution (Case 1: blue, Case 2: red).

f0(C D , CL, C f ) must be found. The expected value targets and constraints are formulated as follows. First, a probabilistic 
constraint is enforced such that x(T ) ∈ [1000, 1150] km with probability greater than or equal to 99%. Second, to ensure 
proper inflation of the parachutes, the final velocity V (T ) must be in the range [0.09, 0.11] km/s with probability greater 
than or equal to 99%. Third, due to structural constraints, the integrated heat load and maximum heating rate must remain 
below 1.5 × 107 kcal/m2 and 3 × 105 kcal/m2/sec, respectively, with probability greater than or equal to 99%. (Note that, 
to enforce the constraint on maximum heating rate, an additional state variable can be included that records the maxi-
mum heating rate for a trajectory, analogous to the obstacle avoidance example above.) These probabilistic constraints are 
summarized in Table 1, Case 1.

This problem was solved using the methodology described in Section 3. The three-dimensional uncertainty space was 
discretized using 50 equally-spaced points per dimension (125,000 total points), and a Tikhonov parameter of λ = 0.001 was 
selected. Furthermore, the initial domain for discretization was found using the level set method described in the previous 
section. Because the joint state distribution is a function of three variables, only 1D and 2D marginal distributions can be 
visualized easily. These distributions are shown in blue in Fig. 12 and in the top row of Fig. 13. These marginals suggest 
that there is a limited range of acceptable CL and C D values that yield vehicle performance satisfying the requirements, 
with preferred values of approximately CL ≈ 0.6 and C D ≈ 1.2. The PDFs for these variables are clearly correlated in Fig. 13
as a result of the dependence of the vehicle trajectory on the lift-to-drag ratio, rather than the lift or drag coefficients 
individually. The distribution falls almost symmetrically along the line indicating a lift-to-drag ratio of 0.51. Furthermore, 
the C f marginal shows a fairly flat marginal distribution below approximately C f = 0.005. This is because the constraints 
imposed do not bias the solution toward low integrated heat values – any integrated heat load within the specified bounds 
is deemed sufficient. Thus there is a large allowable uncertainty in the skin friction coefficient that satisfies the probabilistic 
heating constraints. Predictably, Fig. 13 shows that CL and C D are fairly uncorrelated with respect to C f , although some 
correlation is visible due to the dependence of heating on velocity.

To ensure the generated parameter distribution satisfies the desired performance constraints, a Monte Carlo simulation 
of 50,000 trajectories was performed. Coefficients for each simulation were sampled from the parameter distribution found 
above. The final states were recorded, and relevant statistics were calculated for comparison with the desired expected 
value constraints. The results of the Monte Carlo study are shown in the right-hand column (marked “MC”) of Table 1. 
These statistics show excellent agreement with the desired probabilistic constraints, again verifying the efficacy of the 
computational approach.

A final example explores the case of two probabilistic constraints as well as an expected value target. In the first example 
(Case 1), there is no specification of a desired heating rate value, and only an allowable range is imposed. Instead, consider 
the case where a target expected maximum heat rate is specified according to E[max Q̇ (t)] = 3 × 105 kcal/m2/sec, and the 
probabilistic constraints on heat load and maximum heating rate are dropped. A summary of the probabilistic constraints 
and expected value target for this example is shown in Table 1 as Case 2. This problem was solved using a discretized mesh 
of 25 points per dimension (15,625 total points) and a Tikhonov parameter of λ = 0.001.
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Fig. 13. 2D Marginals of Joint Parameter Distribution (Case 1: top row, Case 2: bottom row).

The resulting solution is shown in Fig. 12 (in red) and Fig. 13 (bottom row). The marginal distributions for CL and C D
look similar to Case 1; however, the C f marginal is noticeably different. Due to the specification of a fairly low expected 
maximum heating rate, the probability mass for the skin friction heating coefficient is clustered closer to zero. This indicates 
that the mean value for this coefficient must be low, with fairly small uncertainty, in order to achieve the desired expected 
value. A Monte Carlo simulation with 50,000 trajectories was performed for this example using the resulting parameter 
distribution, with results shown in Table 1. Once again, the outcomes from the Monte Carlo simulation match extremely 
well with the desired specifications. Note that the relative error between the desired expected value of the maximum 
heating rate and that achieved in Monte Carlo is only 1.84%.

It is interesting to compare the computational effort required to solve Cases 1 and 2. In Case 2, the cost function has 
components from both an expected value target (on maximum heating rate) and Tikhonov regularization. The matrix Ḡ T Ḡ
in Eq. (31) is dense, meaning that the quadratic program solver must use dense matrix storage and perform dense matrix-
vector calculations when computing the cost function. However, when specifying only probabilistic constraints as in Case 
1, the cost is driven only by the Tikhonov regularization. The Tikhonov regularization matrix is sparse, which significantly 
reduces memory storage requirements and allows the quadratic program solver to use sparse matrix multiplication to speed 
up computation. The sparsity of the score matrix in Case 1 allows for a finer mesh over the discretized domain to be 
used (125,000 points) without exceeding memory limitations, compared to Case 2 (which used 15,625 points). As can be 
seen in Fig. 13, this finer discretization results in a better-resolved initial distribution for Case 1 compared to Case 2. Note 
that, for Case 2, a discretization finer than 25 points per dimension resulted in solver memory requirements greater than 
13 GB, which was the beyond the memory capacity of the computer on which these computations were performed. In 
some practical problems, it may be desired that the problem be formulated such that performance targets are specified as 
probabilistic constraints only, rather than expected value targets, in order to realize the memory efficiency gained from a 
sparse cost function matrix (although there may be tradeoffs between memory requirements and computation time which 
are not explored here).

Overall, the three examples in this section illustrate successful application of the proposed solution approach to several 
generalized aggregate data inverse problems. These case studies exemplify the advantages of using the Koopman operator 
to cast the problem as a series of integral equations and integral inequalities, all over the same integration domain. Results 
show that the solution methodology is a promising technique that can be applied to low-dimensional problems across a 
range of scientific and engineering applications.

5. Conclusion

A generalized aggregate data inverse problem has been defined in which a set of expected value targets and constraints 
are specified, and an initial state or parameter probability density must be found. By using the Koopman operator to pull-
back the relevant cost and constraint functions that are applied over the evolved probability distribution, the problem can be 
cast in the form of a set of integral equations and integral inequalities over a single integration domain. A solution approach 
for low-dimensional problems has been proposed that approximates the initial distribution at a set of discrete points, 
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• Koopman operator provides powerful mechanism for optimization under parametric 
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• Unique computational advantages compared to MC and other explicit UQ methods
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uncertainty distributions
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continuous-time controllers
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Fig. 13. 2D Marginals of Joint Parameter Distribution (Case 1: top row, Case 2: bottom row).

The resulting solution is shown in Fig. 12 (in red) and Fig. 13 (bottom row). The marginal distributions for CL and C D
look similar to Case 1; however, the C f marginal is noticeably different. Due to the specification of a fairly low expected 
maximum heating rate, the probability mass for the skin friction heating coefficient is clustered closer to zero. This indicates 
that the mean value for this coefficient must be low, with fairly small uncertainty, in order to achieve the desired expected 
value. A Monte Carlo simulation with 50,000 trajectories was performed for this example using the resulting parameter 
distribution, with results shown in Table 1. Once again, the outcomes from the Monte Carlo simulation match extremely 
well with the desired specifications. Note that the relative error between the desired expected value of the maximum 
heating rate and that achieved in Monte Carlo is only 1.84%.

It is interesting to compare the computational effort required to solve Cases 1 and 2. In Case 2, the cost function has 
components from both an expected value target (on maximum heating rate) and Tikhonov regularization. The matrix Ḡ T Ḡ
in Eq. (31) is dense, meaning that the quadratic program solver must use dense matrix storage and perform dense matrix-
vector calculations when computing the cost function. However, when specifying only probabilistic constraints as in Case 
1, the cost is driven only by the Tikhonov regularization. The Tikhonov regularization matrix is sparse, which significantly 
reduces memory storage requirements and allows the quadratic program solver to use sparse matrix multiplication to speed 
up computation. The sparsity of the score matrix in Case 1 allows for a finer mesh over the discretized domain to be 
used (125,000 points) without exceeding memory limitations, compared to Case 2 (which used 15,625 points). As can be 
seen in Fig. 13, this finer discretization results in a better-resolved initial distribution for Case 1 compared to Case 2. Note 
that, for Case 2, a discretization finer than 25 points per dimension resulted in solver memory requirements greater than 
13 GB, which was the beyond the memory capacity of the computer on which these computations were performed. In 
some practical problems, it may be desired that the problem be formulated such that performance targets are specified as 
probabilistic constraints only, rather than expected value targets, in order to realize the memory efficiency gained from a 
sparse cost function matrix (although there may be tradeoffs between memory requirements and computation time which 
are not explored here).

Overall, the three examples in this section illustrate successful application of the proposed solution approach to several 
generalized aggregate data inverse problems. These case studies exemplify the advantages of using the Koopman operator 
to cast the problem as a series of integral equations and integral inequalities, all over the same integration domain. Results 
show that the solution methodology is a promising technique that can be applied to low-dimensional problems across a 
range of scientific and engineering applications.

5. Conclusion

A generalized aggregate data inverse problem has been defined in which a set of expected value targets and constraints 
are specified, and an initial state or parameter probability density must be found. By using the Koopman operator to pull-
back the relevant cost and constraint functions that are applied over the evolved probability distribution, the problem can be 
cast in the form of a set of integral equations and integral inequalities over a single integration domain. A solution approach 
for low-dimensional problems has been proposed that approximates the initial distribution at a set of discrete points, 
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relatively low drop altitude, the system is not exposed to uncertain
winds for a significant period of time. As a result, the expected
workload value is quite low, and the induced dispersion is small
enough that the planner targets the IPI in the narrow valley. Using the
probabilistic solution, the user should expect to recover an average
ECVof 14.67 for an eight-bundle stick.
While low drop altitudes reduce sensitivity to uncertainty during

descent, they may also pose more operational risk to the aircraft, and
thus higher drop altitudes are generally preferred. When dropping at
higher altitudes, however, greater dispersion is induced. Figure 7b
shows the ECV map for the optimal run-in for the 10,000 ft drop
altitude case. This figure shows that, given the increased dispersion,
targeting the high-valued narrow valley is no longer the optimal
solution. According to the user-supplied cost function, the possibility
of landing near the desired IPI no longer outweighs the risk of landing
on the mountaintops, which incurs a large penalty. The probabilistic
planning methodology automatically adapts the optimal CARP and
run-in solution to target the higher-cost but wider northern region to
minimize the expected workload under the increased uncertainty
without any user interaction. This stands in contrast to the
deterministic planner, which continues to target the IPI since it has no
mechanism to condition the CARP and run-in solution on the
underlying uncertainty distributions. This ability to adapt to varying
levels of uncertainty is one of the key strengths of the probabilistic
planner over deterministic methods.
To compare the probabilistic and deterministic solutions for a

10,000 ft drop altitude,MonteCarlo simulationswere performed. For
both CARP and run-in solutions, 250,000 eight-bundle sticks were
simulated from the drop altitude to ground with their terrain-impact
locations and workload function values recorded. Figure 8a shows
the terrain impacts of the two solutions, with the deterministic
solution still targeting the valley and the probabilistic solution
targeting the northern region. The average cost function value for
every stick is computed and used to create the empirical CDF shown
in Fig. 8b.
Important statistics from Fig. 8b are listed in Table 4 and show the

tradeoffs between the two solutions. First, considering minimum

values, the probabilistic solution’s lowest impact value is 24.4, while
20% of the deterministic solution’s impacts obtained a lower
workload function value than that. More generally, the top (lowest)
tenth percentile of the deterministic solution’s impacts is a full ten
units less than that of the probabilistic solution. However, when
considering the bottom (greatest) tenth percentile, the probabilistic
solution outperforms the deterministic solution by over 27 units. This
near elimination of the higher-valued tails pushes the probabilistic
solution’s mean lower than that of the deterministic solution. In other
words, the probabilistic scheme naturally trades the ability to
minimize its score in a low number drops for increased robustness of
the overall mission.
The Monte Carlo simulations also provide a method to check the

accuracy of the mission planner, given this complex scenario. The
planner computed an expected objective function value of 73.75 for
the optimal CARP and run-in, while the Monte Carlo objective
function results show an average value of 71.58, producing a relative
error of 3.0%. When comparing the cost function values, 26.25 from
the planner and 28.42 from Monte Carlo, the relative error is
increased to 7.6% through the reversion process.

C. Constrained Exclude Region Case

A final example explores the planning methodology’s ability to
handle probabilistic constraints. In this scenario, the packages should
land so as to minimize the travel distance from an IPI while avoiding
an obstacle or exclude region near the IPI. The allowable probability
that any bundle in the stick landswithin the obstaclewill be given by a
tolerance between 0 and 1.
Figure 9 shows the mission scenario. An IPI is located at (5000,

5000 m), and the distance traveled (workload) to retrieve the bundles
is to be minimized. Additionally, the exclude region is a 60 × 100 m
area near the IPI that cannot be traversed, and as such, the probability
that a package lands in the area is included as a constraint. The
optimal CARP and run-in decision is formulated using an inequality
constraint as defined in Eq. (53). The inequality constraint function is
to describe the probability that any bundle in the stick lands in the
exclude region. As such, De Morgan’s law [Eq. (54)] is used to
compute the stick’s composite value.
The cost function g, shown in Fig. 10a, is constructed by

computing the geodesic travel distance from the IPI, given that the
exclude region cannot be traversed. It is then inverted using a
maximum allowable cost of 500 m. The constraint function c, shown
in Fig. 10b, represents the probability of being within the exclude
region at ground level and is therefore 1 inside the region and 0
outside the region. The user’s tolerance to a bundle landingwithin the
exclude region is quantified by λe.
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a) Monte carlo impact locations b) CDF for probabilistic and deterministic solutions
Fig. 8 Terrain impact locations and resulting empirical CDFs for 10,000 ft drop altitude.

Table 4 Deterministic and probabilistic MC
impact statistics

Solution 10th percentile Mean 90th percentile
Deterministic 16.73 36.99 57.32
Probabilistic 26.96 28.42 29.95
Change !10.23 −8.57 −27.37

Article in Advance / LEONARD, ROGERS, AND GERLACH 13

D
ow

nl
oa

de
d 

by
 G

EO
R

G
IA

 IN
ST

 O
F 

TE
C

H
N

O
LO

G
Y

 o
n 

Ju
ly

 3
, 2

01
9 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
1.

G
00

42
77

 
Z

⌦
PSf(x)g(x)dx =

Z

⌦
f(x)USg(x)dx



Relevant Publications

A. Gerlach, A. Leonard, J. Rogers, C. Rackauckas, The Koopman Expectation: An Operator Theoretic Method for Efficient Analysis and 
Optimization of Uncertain Hybrid Dynamical Systems,” Arxiv Preprint, https://arxiv.org/abs/2008.08737

J. Meyers, J. Rogers, A. Gerlach, “Koopman Operator Method for Solution of Probabilistic Inverse Problems,” Journal of Computational 
Physics, Vol. 428, 2021, pp. 1-21.

G. Gutow, J. Rogers, “Koopman Operator Method for Chance-Constrained Motion Primitive Planning,” IEEE Robotics and Automation 
Letters, Vol. 5, No. 2, 2020, pp. 1572-1578. 

J. Meyers, A. Leonard, J. Rogers, A. Gerlach, “Koopman Operator Approach to Optimal Control Selection Under Uncertainty,” 2019 
American Control Conference, Philadelphia, PA, July 10-12, 2019.

A. Leonard, J. Rogers, A. Gerlach, “Koopman Operator Approach to Airdrop Mission Planning Under Uncertainty,” Journal of Guidance, 
Control, and Dynamics, Vol. 42, No. 11, 2019, pp. 2382-2398.

A. Leonard, J. Rogers, A. Gerlach, “Probabilistic Release Point Optimization for Airdrop with Variable Transition Altitude,” Journal of 
Guidance, Control, and Dynamics, Vol. 43, No. 8, 2020, pp. 1-11.

https://arxiv.org/abs/2008.08737

