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A Fundamental Question

@ Let the LTV system
= A(t)r + B(t)u

with boundary conditions x(0) = zg and z(T") = x7.

@ Then the control

u(t) = BT(1)07(0,1) (6(T,7)B(r)BT(r)6(0,7) dT>_1(x(T) — O(T,0)z(0))

minimizes

and satisfies the given boundary conditions.
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A Controllability Result

Theorem (Brockett, 2012)

Consider the system
&t = Ax + Bu + Dw

with the ontrol law
u(t) = K(t)x(t) + v(t)

Let (A, B) be controllable and let 3 denote the (co)variance, which satisifes
> =(A+BK@t)L+X(A+BK(t)' +DD'

With K as a control, any 1 = 0 can be reached from any ¥(0) > 0.




Problem Formulation

Consider discrete-time stochastic linear system

Tiaen = Alpags A By =0 D,

@ We wish the initial and final states to be distributed according to
ro N(,LL(), EO), LN ./\/’(/1,4\,*. ZN)

where 1o, X0, un, 2N given, while minimizing the cost function

N-1
T T , ,
J(z,u) =E E T Qrry + up Riug +:1:X\nz,;\v
k=0

where Q. > 0 and R, = 0 forall k=0,1,..., N — 1.

@ Assume that Xg = 0 and X = 0,



The system at time step k = N can be written as

where

xny = EnX = Axg + BU + DW
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Covariance Controller

@ Let the control sequence
Uk = Vi + Kryg

where ;. is given by
Yk+1 = ArYr + Diwi
Yo = Lo — Mo

and let the control law
U=V +KY



Theorem (Okamoto & PT, 2018)

The cost function takes the form
J(V,K) =tr (((I +BK)TQU + BK) + KT RK)(ASo A" + DDT))
+ (Apo + BV) "Q(Apo + BV) + V'RV
In addition, the terminal state constraints can be written as

un = En (Apo + BV),
Yy = Ey(I +BK)(AL A" +DD") (I + BK)'Ey

Note that V' steers the mean and K steers the covariance, respectively.
Letting

>N = En(I+ BK)(ASA' + DD (I + BK)'Ey

yields a convex problem.



State Constraints

@ Can handle convex chance constraints of the form

Pr<ajk¢X)§Pfaﬂa k’:O,,N—l

where

M
x=[{z:ojz <85}
j=1

-1.5 >

0.2

the chance constraint can be formulated as

a) (Apo +BV) + |[(ASe A" + DDT)Y2(I + BK) "o || 271 — pj gait) — B;

Second order cone (convex) constraint in K and V.
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lterative Risk Allocation

@ Chance constraint

ajT (Ao + BV) + ||(ASg AT + DDV + BK) T ||®7 (1 — pjpait) — B < 0

o Iterate on risk thresholds p; f,i)

Pr(Oé]TX > ) < Py tail,

@ Tends to maximize terminal covariance,
while still satisfying the chance constraints

@ Less conservative solutions than previous
methodologies.

@ Both polygonal and cone constraints




State and Control Constraints

@ Assume that
Bl (€ s ur, € U

where X' and U/ are convex sets containing the origin.

Ngs—1 N.—1

E = m {x:aljxgﬁx,j}, 1= ﬂ {UZ&lsuéﬁu,s}a

J:O s=0
@ Since state is possibly unbounded we impose as chance constraints,
Pr(zy ¢ X) <e¢

@ Keep ui € U since hard constraints for input are preferable.



Main Result

The control law
Uk = Vg + Ki2k

where z;. is governed by the dynamics

2re1 = Az + o(wg)
20 = ¢(Co), Co = To— Mo

where ©(-) : R? —+ RY is an element-wise symmetric saturation function

pi(¢) = max(—¢;", min(g, ;"))

converts the problem to a convex programming problem.




Numerical Example

‘Acceleration limits: Az, Oy < 2.9 m/s2




Non-Convex Constraints

@ For non-convex polytopic constraints, write

N sl

X = U ﬂ {ngqugﬁ"%q}

r=0 =0

/

N

R,

and enforce Pr(zp ¢ R,) <€ and Pr(xrpi1 € R,) <€

L emma

Given R,., the condition

Pr(xzp ¢ R,) <e and Pr(rri1 ¢ R,r) <e,

is a second-order cone constraint in V and K.
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Reference trajectory depends on uncertainty




Sampling-Based Planning

@ High-dimensional spaces
@ Many variants: RRT, PRM, RRT*, RRT#, BIT*,...

@ Do not handle uncertainty directly

@ Can do planning in belief space: BRM, FIRM, ...
e Uncertainty handled indirectly

e Nodes have to be stabilized

@ Can we do better?




CS-BRM Motion Planning

Idea: Use CS controller as edge controller to perform planning in belief space

Generated structure (random tree) b’ B b'°(0,1,2,4,8)

in belief space 5"(0,1,2,4,8,10)

“FIRM: Sampling-based feedback motion-planning under motion uncertainty and imperfect measurements” A. Agha-mohammadi,
S. Chakravorty, N. Amato
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CS-Belief Space Planning (CS-BRM)

@ Enables guaranteed satisfaction of terminal belief constraints in finite-time.

@ The CS-BRM algorithm allows the sampling of non-stationary belief nodes, and thus is
able to explore the velocity space and find efficient motion plans

@ Addresses “node reachability’” and “curse of history” problems of traditional BRMs

_ N . — Explicitly incorporate motion and
Shortest path has a higher probability of collision SbeBryation MNEArEaintias

— Directly control the belief
between the BRM nodes

— Nodes do not have to be
stationary

— Better explore the velocity space
and find paths with lower cost.




Covariance Steering Stochastic MPC

sz > mode 1 > mode 2 ——»
Predicted state "\
trajectory ' e
_ i \1_
I I '
L I. 1 ! L - = ._>
; — et ;
0 1 2 " N +N+4+1 -.-- Prediction
J : time step
\ ,'
Terminal / i
constraint set, X'

(Model Predictive Control: Classical, Robust and Stochastic, B. Kouvaritakis and M. Cannon)
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Stochastic MPC

min JN(xk§uk|k>uk+1|k:a e auk+N—1|k) =
Uk |k sUk+1|ks- s U+ N—1|k
k+N-—1
E QT + U, R + Eg| |7 PreanEx| ]
i T QT 1+ Uy LUy, k| Vk+N|k] fmeanlk|Lk4+N|k
t=k

subject to
Lt+1|lk — Al‘ﬂk . But|k + Dwy, Lk|lk — Tk ™~ N (pk, Zi)

Pry, (Q;—,ixﬂk u 5m,z) =1 — Pz, [ | — 7Ns —{I
Pry (aljuﬂk SBUJ) 21_pu,j7 j:()a"'?Nc_l

Er [k+Nk] € X5

Ei [(zr+nk — El@ksNik]) Tk ne — E[xk+N|k:])T] a2



Suppose that ¥ is assignable, ji; € X Jff , such that for all p € X Jff

¥ I
(A+ BK)u € X}

C‘faTz,q;M T Hzfl/%‘x,i”q’_l(l — p:c,i) — Pz <0

i K i+ 122K T 0 |97 (1= puj) — Bug <0

where K is from corresponding assignability gain matrix, and Pmean is the solution of the
discrete-time Lyapunov equation

(A+ BK) " Pyean(A+ BK) — Ppean + Q + K RK =0

Then, the solution ensures recursive feasibility and stability.
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Take-Aways

@ Directly controlling a distribution of trajectories results in strict performance guarantees.
@ Eliminate the need for extensive Monte Carlo analysis.

e Many, many applications.

@ For linear systems with Gaussian noise, theory well-developed.

Some Extensions

o Output feedback (Bakolas, 2019; Ridderhof and PT, 2020; Maity and PT, 2021)
o Nonlinear systems (Caluya and Halder 2019; Ridderhof, Okamoto, and PT, 2019)
o Differential games (Makkapatti, Okamoto and PT, 2020)

o Non-Gaussian noise (Sivaramakrishanan, Oishi, Pilipovsky, and PT, 2021)
o Hybrid & Switched Systems (Pakniyat and PT, 2021)



